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Abstract 
Generally, when the misalignment fault occurs in a wind turbine, the vibration signals present the non-

stationary and non-linear characteristic nature. The early misalignment fault signal is easily overwhelmed by 

the strong background signals and noise, making it difficult to detect reliable fault feature. In this paper, a 

novel variational mode decomposition (VMD) is introduced to address the issue instead of other common 

adaptive decomposition algorithms such as empirical mode decomposition (EMD) and wavelet transform. 

VMD is capable of decomposing the fault vibration signal into several stable components and realize the 

separation of misalignment fault component from background signals. A case study using the fault data from 

our test rig demonstrate the effectiveness of this method. The characteristic 2X frequency can be extracted 

from the stable components obtained by VMD efficiently. On the contrary, the fault feature of the 

components decomposed by the comparative methods is relatively unconspicuous due to the mode mixing 

and frequency aliasing. 

 
1 Introduction 

With the rapid growth of wind power installed capacity, condition monitoring and fault diagnosis has 

gradually become an important research content in the development of wind power generation technology. 

As one of the common failure modes in wind turbine, the misalignment fault may cause the vibration of 

generating set, reduce the reliability of transmission system and even result in the damage of gearbox or 

bearings [1,2]. Since the couple will be generated by misalignment faults and the shaft neck loads twice 

forces per round, the 2X frequency will arise when the mechanical chain runs with a high rotation speed. 

However, the feature of early faults is relatively unconspicuous. With strong background signals and noise, it 

may be difficult to detect obvious characteristic frequency. The adaptive decomposition approach is a 

powerful tool to solve this problem which can decompose the raw vibration signal into multiscale 

components [3]. This technology can achieve the separation of the fault component and other signal 

components, promoting the accurate early diagnosis.  

Wavelet transform has the ability of multi-scale analysis using scaling and translation functions [4], 

while the frequency aliasing phenomenon may be produced by Mallet algorithm in the process of signal 

decomposition and reconstruction. In this case, the components will lose the physical meanings and fail to 

reflect the explicit frequency components in raw signal. Moreover, the appropriate wavelet basis function 

plays a significant role in acquiring a desired decomposition performance. 

Empirical mode decomposition (EMD) is another typical adaptive decomposition method, which utilizes 

sample interpolation curves to acquire a finite number of component signals called intrinsic mode function 

(IMF) [5,6]. With its high time–frequency resolution and excellent adaptability, EMD has been extensively 

studied for fault diagnosis in mechanical system [7]. Nevertheless, because of the defects of this algorithm, 
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the decomposition performance suffers from mode mixing and end effect dramaticly. The mode mixing is 

defined as several significantly distinguishing component scales exist in single IMF, leading to the 

meaningless signal components. 

Variational mode decomposition (VMD) proposed by Dragomiretskiy and Zosso in 2013 is a novel 

adaptive decomposition algorithm for the multi-component signal, making use of iterative optimization 

approach to determine the center frequency and bandwidth of each component [8]. Recently, the emerging 

VMD has received more and more attention in the field of feature extraction and diagnosis [9-13]. An et al 

applied VMD to the pedestal looseness fault diagnosis in rotating machinery and successfully extracted the 

faint fault information, namely the half fractional harmonic component of the rotational frequency [9]. 

Mahgoun et al compared VMD with ensemble empirical mode decomposition (EEMD) in the application for 

gear faults detection with variable rotating speed and VMD gave promising results [10]. Yi et al put forward 

a rolling bearing fault diagnosis scheme based on VMD and particle swarm optimization. The analysis 

results showed that VMD can enhance the fault feature of rolling bearing so that more high order harmonics 

of fault characteristic frequency can be detected, significantly outperforming EMD [11]. In this paper, to 

address the issues mentioned above, a wind turbine misalignment fault diagnosis method based on VMD was 

presented. It can not only separate the components of fault signal with 2X frequency, background rotating 

signal and noise from raw vibration signal exactly, but avoid the drawbacks of frequency aliasing and mode 

mixing in other well existing techniques. 

 

2 Variational mode decomposition  

VMD is capable of decomposing the complicated multi-component signal into a discrete number of 

quasi-orthogonal band-limited intrinsic mode functions (IMFs). The main theoretical framework is to find 

the optimal solution of a variational problem, adopting constantly iterative optimization strategy to locate the 

center frequency and bandwidth of each component. For any given non-stationary signal  , the 

decomposition problem can be defined as follows 
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where                are the mode components,                are their corresponding center 

frequency and   is the number of decomposed intrinsic modes. To address this constrained variational 

problem, a quadratic penalty term   and Lagrangian multipliers   are introduced. The (1) can be transformed 

into following format 
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Further, the alternate direction method of multipliers (ADMM) is applied to produce different modes and 

center frequencies during each shifting operation. The estimated modes    and the corresponding updated 

center frequency in the frequency domain can be given as follows: 
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Summarizing the aforementioned steps, the complete optimization of VMD can be express as:  

Initialize    
      

          

Repeat        

For       do 

Update    for all         
                  

              
        

      

 
 

 

         
  

                            

Update       
    

      
       

 
  

 
 

     
       

 
  

 
 

                                                                                         

End for 

Dual ascent for all                                   
   

                                                          
(5) 

Until convergence:       
       

  
 

 
     

   
    . 

Detailed introduction of the VMD can be referred in [8], presenting a promising prospect in adaptive 

decomposition problem. 
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3 Case study  
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Figure 1. Test rig schematic diagram of direct-drive wind turbine 

 

 
Figure 2. Test rig of direct-drive wind turbine 

 

To demonstrate the availability of the proposed method for misalignment fault diagnosis, an 

experimental analysis was performed on the direct-drive wind turbine showed in Figure 1 and 2. The 

experimental system is introduced in literature [14,15]. The misalignment fault was implemented by 

inserting a shim (around 2mm) under the front bearing pedestal. Figure 3 gives the time waveform of axial 

displacement signal in misalignment condition. With the wind speed around 8.0m/s, the rotational speed of 

main shaft was around 270 rpm. The sampling frequency was 2000 Hz. The frequency spectrum of the 

vibration signal in Figure 3 is presented in Figure 4. A main peak appears at the rotating frequency X. 
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However, it is difficult to detect the fault information of misalignment due to the strong background signal 

and noise. Hence, the adaptive decomposition methods are applied to cope with this problem.  

Figure 5 shows the decomposition results via VMD. From the nine obtained component modes, it is clear 

that the       denoting the noise and high frequency harmonic components are well separated from analytic 

signal. The attracted components     and    are investigated by frequency analysis. It can be seen that the 

rotational frequency X and an obvious 2X frequency appear in Figure 6 (a) and (b) respectively. It signifies 

the vibration signal contains a 2X component and means misalignment faults may occur in the mechanical 

system, agreeing with the actual status in the test rig. The results show the VMD can separate the real 

components masked by background signals and noise effectively. 

For comparison, the EMD and wavelet transform are also adopted to handle this issue and the 

decomposition results are illustrated in Figure 7 and 8. In Figure 7, eight IMFs and a residual part are 

produced by EMD. One can find the distinct mode mixing phenomenon in the IMFs. Meanwhile, from the 

frequency spectra of       in Figure 8, we only observe the rotational frequency X, whereas no obvious 

fault characteristic can be detected. The 2X frequency component is total submerged in the decomposed 

IMFs duo to mode mixing. 

As seen in Figure 9, wavelet transform generates seven high-frequency components       and a low-

frequency component    from raw signal. Likewise, the       represent the noise and high frequency 

harmonic. The frequency spectra of attracted components, namely   ,    and   , are illustrated in Figure 10. 

A main peak 2X frequency component along with several interfering frequencies can be found in Figure 

10(b). In Figure 10(c), the rotational frequency X is obvious. Although the component    contains the signal 

component evincing the misalignment fault and a 2X frequency can be found in its frequency spectrum, in 

contrast with the results by VMD, one can see the frequency aliasing arises in vibration waveform and 

frequency spectrum by wavelet transform, affecting the veracity of diagnosis. According to the comparison 

above, VMD significantly outperforms the conventional EMD and wavelet transform, which demonstrates 

its excellent adaptive decomposition capacity. 

 

 
Figure 3. Time waveform of vibration signal with misalignment fault 

 

 
Figure 4. Frequency spectrum of fault signal 
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Figure 5. Decomposed modes of misalignment fault signal using VMD 

 

 
Figure 6. Frequency spectra of valuable components. (a) Frequency spectrum of   ; (b) frequency spectrum of   . 
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Figure 7. Gained IMFs of misalignment fault signal using EMD 

 

 
Figure 8. Frequency spectra of valuable components. (a) Frequency spectrum of   ; (b) frequency spectrum 

of   ; (c) frequency spectrum of    
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Figure 9. Decomposition result of misalignment fault signal using wavelet transform 

 
 

 
Figure 10. Frequency spectra of valuable components. (a) Frequency spectrum of   ; (b) frequency spectrum 

of   ; (c) frequency spectrum of    

 

4 Conclusions  
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approaches. For the difficulty of early diagnosis of misalignment fault, VMD was introduced to diagnose this 

type of fault in wind turbine. The case study using the data from our test rig shows that VMD is capable of 

separating the fault characteristic component from the strong background signal and noise effectively. This 

can achieve the feature extraction of weak fault when the misalignment fault occurs. The decomposed 

components by VMD have a precise physical meaning and contribute to judge the status of mechanical 

system. As a contrast, the decomposition performances by EMD and wavelet transform suffer from mode 

mixing and frequency aliasing respectively, leading to the ambiguous diagnosis results. 
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