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Abstract
Tool wear during machining is inevitable since it is inherent to any cutting process because of high level of
stresses, friction and temperature to which the tool is subjected. However, machining with a worn tool may
not only affect the tolerances, but also the machine tool. The tool wear leads to undesirable vibration and it
influences tool change strategies, dimensional quality of product and productivity. It has been shown that tool
failure contributes on average up to 6.8% to breakdown time in machining centers. Tool wear monitoring by
indirect methods offers possibilities of successful on-line implementation. The use of vibration based monitor-
ing has its success conditioned on the definition of features able to capture the evolution of tool condition. This
work aims to estimate residual life of cutting tool in milling as a function of a well defined vibration symptom
(feature). The concept of symptom reliability is used to predict the tool life during a milling process based on
vibration measurement. .

1 Introduction

The cutting tools are subjected to very high surface stresses, high temperatures, chip sliding on the cutting
surface and sliding of the main relief surface on the machined surface. These conditions lead to mechanical and
thermal damage, i.e to tool wear. Working with a worn out tool has negative impact on the quality of machined
worpiece in terms of surface roughness and dimensional accuracy. Tool wear also leads to high cutting force
and undesirable vibration which can contribute to the surface quality deterioration; in the worst case, it can
result in tool breakage [1]. It has been shown that tool failure contributes on average up to 6.8% to breakdown
time in machining centers [2].

Whatever the machining technique used, when examining tools of different compositions (high-speed steel,
carbides, cermets, ceramics, etc.), one notes a wide range of wear facies. Some are broken (edge breaks), others
are chipped. Most have a geometry that evolved almost continuously (worn tools). Apart from the ruins of tools
by chipping and micro-chipping, it can be observed that each of these cases gives rise to more or less rapidly
three typical facies of damage (figure 1):

1. formation of a crater on the rake face, the maximum depth of which is commonly referred to as KT; The
strength of the tool decreases as KT increases;

2. a flat frontal wear area on the main flank face, the average height of which is commonly indicated by the
symbol VB. As VB increases, the cutting edge moves back and the dimensions deviate from the target
value;

3. formation of a grooves on the flank faces at the edge of the cutting zone. The condition of the machined
surface is all the more deteriorated as these grooves are more developed.
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In order to decide whether the tool is used or not, quantitative criteria must be established. Two approaches
are possible:

• one can choose to link these criteria to the dimensional degradation of the parts and the quality of their
surface. A state of wear is then declared if one moves away from a certain tolerance zone for the dimen-
sions and the surface roughness. This approach requires measuring the dimensions and surface condition
of each workpiece;

• the second approach defines criteria related to wear measured directly on the tool.

The second approach is often preferred to the first. The most commonly used criterion is based on the
measurement of flank wear (VB), because it is the type of wear that most influences the quality of the generated
surface. A standard measure of tool life as proposed by the NF E66-505 and ISO 3685 standards is the time
required to develop an average VB wear of 300 µm when wear is relatively uniform and easy to measure,
therefore mainly caused by abrasion. On the other hand, when the wear presents an irregular profile, the
average flank wear is no longer a tool life criterion, VBmax = 600 µm is used (Figure 1).

However, other sources argue that fixing the maximum wear to a given VB can lead to serious economic
mistakes, because some tools used for roughing pass and having large cutting edge dimensions can support VB
up to 1 mm while remaining within a permissible operating mode [3]. Unlike flank wear, the crater does not
influence the finish of the surface. It may, however, under certain thermal conditions, result in a sudden failure
of the tool. A KT crater depth of 0.05 mm to 0.1 mm is considered as an end-of-tool criterion (Figure 1).

Figure 1: Wear pattern for a carbide tool ([3])

It is obvious that direct measurement of tool wear in production environment is as not feasible as the
systematic check of surface quality of machined part. That is the reason why in mass production, a simple
approach based on the number machined parts is often used.

Indirect tool monitoring methods, in contrast to the direct methods, proceed by evaluating the wear on the
basis of the parameters measured during the cutting process: cutting forces, acoustic emission or vibrations.
Indirect methods are usually online methods. Online ability to monitor the tool state and to predict its residual
life is important, on the one hand for a rational management of production time and on the other hand to
guarantee the quality of the parts machined in term compliance with tolerances and surface condition. There
is therefore a real need for methods to detect the occurrence of wear and to monitor its evolution as part of
a ”just-in-time” tool change policy [4, 5]. Tool wear monitoring by indirect methods offers possibilities of
successful online implementation, and can enable the implementation of such a policy. Among the indirect
monitoring techniques, vibration monitoring are cheap to implement, but its successfull use is conditioned on
the definition of good and relevant features able to capture the evolution of tool condition.

In general, feature-based monitoring compares the feature values to predefined thresholds to decide on the
state of the monitored process. The prediction of future state is based on the time when a projected feature
trajectory hits the threshold level. It comes that threshold definition is a crucial step in a such approach.

This work exposes a threshold-free approcach based on symptom reliability to online assess the residual
life of a cutting tool.
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2 Symptom reliability

2.1 The concept

The traditional concept of reliability is based on the statistics of failure time. Another approach to the
reliability concept was introduced by Natke and Cempel [7, 8] by making it follow from the theory of the
energy model of mechanical systems damage. Under this approach, the energy balance of a mechanical system
can be written as

Ni = Nu +Nd (1)

where Ni is the input power, Nu the usable power and Nd the total dissipated power. This latter power is due
to the variation of two energy quantities Ed and V and which are respectively internal and external dissipation.
The internal dissipation Ed results in damage to the system (wear, for example), while the external is expressed
by observable symptoms S (vibration, temperature, noise, ...).

If θ is the system lifetime and θb the breakdown time, by adopting a linear model of damage one defines
the dimensionless cumulated damage as

D =
θ

θb
(2)

so that the damage D = 0 at the beginning and D = 1 at breakdown.
The residual life at a time t = θ is estimated by θb−θ leading to the dimensionless damage capacity ∆D,

∆D = 1−D = 1− θ

θb
(3)

The mechanical system monitoring can be based on comparing the symptom S(θ) to a limit Sl , not neces-
sarily equal to Sb = S(θb) the symptom value at breakdown. As long as the inequality S < Sl is verified, the
system can be considered as in ”good condition”, otherwise there is a failure.

In [9], the authors define the symptom reliability R(S) as the probability that a system characterized by
S < Sl , i.e. classified as in good condition, will be operational. It comes that

R(S)≡ P(Sb > S|S < Sl)≡ PG(Sb > S) (4)

This definition can be justified by assuming that measurements {Si} at different dates θi are available for a set
similar equipments. One assumes also that all the limitations imposed to the definition are respected. At a time
increment δθ , the measured symptom becomes Si + δSi with δS/S << 1, and some of the equipments can
experience a failure, i.e d S+δS ≥ Sb. Thus, following its definition, the symptom reliability at S+δS can be
written as the conditional probability, given S < Sb:

R(S+δS) ≡ PG(S+δS≤ Sb|S < Sb)

= PGG(S+δS < Sb|S < Sb)+

PGF(S+δS≥ Sb|S < Sb) (5)

with PGG(.) the proability the system doesn’t fail after the time increment δS, and PGF the failure probability
when the symptom is increased by δS. The probability of failure can be assessed as follows:

PGF(S+δS≥ Sb|S < Sb) =
P(S < Sb ≤ S+δS)

PG(S < Sb)

=
PG(S)−PG(S+δS)

PG(S)

=
R(S)−R(S+δS)

R(S)
= h(S)δS− ...
∼= h(S)δS (6)
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The just introduced function h(S) represents the symptom-based risk function. Physically, h(S) can be seen
as the failure intensity for a unit increment of the symptom:

h(S)≡−d lnR(S)
dS

(7)

The symptom reliability can then be related to the damage capacity or residual life ∆D:

R(S) = 1−D = ∆D (8)

This theory of mechanical damage is consistent with reliability models described by the following distribu-
tions of R(S):

• Weibull, S > 0

R(S) = ∆D = exp
[
−
(

S
S0

)γ]
(9)

• Fréchet, S > 0

R(S) = ∆D = 1− exp

[(
− S

S0

)−γ
]

(10)

• Pareto, S≥ S0 > 0

R(S) = ∆D =

(
S
S0

)−γ

(11)

where S0 = S(θ = 0).
The life curve of an equipment can be expressed as

S
S0

= f (D) (12)

2.2 Use of symptom reliability for online tool life prediction

When signal-based indirect methods are used, features sensitive to wear must be extracted. The monitoring
procedure can use this features with a classifiers trained to recognize specific tool conditions [10, 11]. This im-
plies that historical data should be available to train the classifiers. An alternative option is to define thresholds
on the monitoring features and to predict when the feature trajectory will hit the threshold level. The drawback
of this approach is the classical difficulty to define reliable thresholds and the dependency of the tresholds on
tool and workpiece materials as well as on the cutting parameters.

When symptom reliability method is used, for instance with the Weibull distribution, on can write

Sn(θ) =

[
− ln

(
1− θ

θb

)]1/γ

+C (13)

where Sn(θ) is the symptom feature at time θ , θb is the breakdown time, γ and C are model parameters.
Figures 2 and 3 illustrate a symptom curve and its related damage curve.
The monitoring procedure consists in estimating the reliability model parameters at each time step. The

breakdown time θb provides information on the remaining life of the tool and correponds to a damage level
D = 1. The remaining useful life can then be defined as corresponding to a predetermined damage level, for
example 0.75.
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Figure 2: Shape of the symptom trajectory based
on Weibul distribution

Figure 3: Damage curve

3 Experimental study

3.1 The setup

The data used in this study are acquired during a milling process of the ST-52-3 steel with a high speed
cylindrical end mill (diameter 8 mm, 2 flutes, helix angle 30o), (see Figure 4) [12]. Successive slots are realized
in the steel bloc until the tool fails (VB=300µm). The accelerometer is attached to the workpiece and the data
are sampled at 25 kHz using NI cDaq 9172 acquisition system. Signal of 10 seconds duration are recorded
successively during the process. The cutting conditions are: a spindle speed of 875 rev/min, an axial depth of
cut of 4mm, a radial depth of cut of 1mm and a feed rate of 0.04 mm/tooth.

Figure 4: The experimental setup

Figures 5 and 6 show typical signals and their spectra recorded at begining and at the end of life of the tool.
In the time signals one can notice events corresponding to when the two teeth enter and exit the material. The
global energy of the vibration increases with the wear, however a thorough analysis shows that the difference
is mainly coming from the frequency range 2-7 kHz. This suggest to develop features based on filtered signals
in this range.

3.2 Definition of the tool wear vibration symptom

Since the initiation of wear is manifested by micro-shocks and its increase induces a general vibrational
level increase, we use the crest factor A f c and the rms value Arms in the considered frequency range (2-7kHz)
to build wear indicators. In order to take into account the time memory of the tool and the time dependency
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Figure 5: Typical signals relative to fresh and worn
tool, respectivelly

Figure 6: Typical spectra relative to fresh and worn
tool, respectivelly

between successive measurements, the running averages of the above mentionned quantities are calculated:

Zrms(ti) =
1
i

i

∑
k=1

Arms(tk) (14)

Zfc(ti) =
1
i

i

∑
k=1

Afc(tk) (15)

The running mean rms will have an increasing trend beacause of high vibration energy when wear progresses,
and the running mean crest factor will present a decreasing trend. We define the monitoring feature as the ratio
of the two

Feat(ti) =
Zrms(ti)
Zfc(ti)

(16)

Figure 7 depictes the march of the monitoring feature for the complete life of the tool. The shape of the curve
suggests the use of Weibull distribution for the symptom reliability.

Figure 7: March of the defined feature for the complete life of the tool

3.3 Results and discussion

The model parameters are estimated at each step and the tool end-of-life is predicted (figure 8).
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Figure 8: Evolution of estimated parameters at each time step

On figure 9, symptom trajectories are predicted using the already received data points. The represented
trajectories correspond to 10, 80, 90, 100 and 117 data points (the run to tool end-of-life comprises 117 data
points).

Figure 10 shows the estimated tool damage at each time step. We notice two zones correponding to mod-
erate and high tool wear rate, respectivelly. The second zone is detected 10 minutes prior to the machining test
stop. The cutting tool was inspected at the end of the test. One of the cutting tooth presented VBmax = 264µm,
a value close to the limit of 300 µm indicated in section 1 (see figure11).

Figure 9: Predicted symptom trajectories Figure 10: Evolution of estimated parameters at
each time step

The remaining tool life is estimated at each time step as RUL = θ −θb. Figure 12 shows also the two zones
corresponding to the wear rate. It can also be noted that the tool end-of-life can accuratly be estimated 10
minutes in advance.

4 Conclusion

This paper has demonstrated the use of symptom reliability for tool life prediction using vibration signals.
This approach has the advantage of being able to estimate the end of life without needing a predefined threshold.
Furthermore, it is independant on the combination tool-material because of its threshold-free character. The end
of life is decided based on damage level only rather than on a threshold set on the monitoring feature. A simple
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Figure 11: Tool condition at the end of the test

Figure 12: Estimated remaining tool life

usage can consist in changing the tool when a predefined damage level is reached.
The experimental case used in this work showed that weibull distribution was well suited to the defined

feature. However, in practice, one can run in parallel different distribution models (weibull, Fréchet or Pareto) to
select the one which converges consistently. Although the work presents a single test for a specific combination
of tool-material and cutting parameters, the authors think that the approach can be apply to any cutting situation
since the reliability model is learning its parameters online based on incoming data. Extensive experiments are
planned with different tool-material pairs and cutting parameters to validate the approach.
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