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Abstract
Over the past two decades, several models of a faulty bearing vibration signal have been proposed, and the
majority of these models are assumed to be cyclostationary. To the best of our knowledge, all related works
remain general whatever the nature of the bearing fault and with limited theoretical cyclic analysis. This study
is a natural extension of previous related works which aims to provide a detailed and coherent theoretical
framework allowing the correct description of inner-race and outer-race bearing fault signals. To do this, we
propose a new mathematical model and prove analytically the property of wide-sense cyclostationarity. As
a matter of fact, a good comprehension of bearing fault mechanism can allow the development of efficient
algorithms for fault identification. Thus, this model and the corresponding theoretical development can be
used as a platform for deconvolution, and blind source separation. In order to confirm the effectiveness of the
theoretical cyclic analysis related to the proposed model, some simulations on synthetic and real faulty bearing
signals are presented.

1 Introduction

It is well known that rolling element bearings are the most fragile components for rotating machines. Be-
cause of hostile working conditions, and other reasons, bearings usually are easily damaged. Those damages
mainly result in vibrations and noise which can break the machine or at worst, bring down the whole system
and then be the cause for much more economic losses. Actually, machine vibrations are an important source
of information describing the machine state. Hence the need for tools to correctly extract and analyse this
information. During the past fifty years, many monitoring and diagnostic techniques have been developed to
detect bearing faults, from vibratory signals, before failure occurs. Thus, vibration analysis becomes the most
used and suitable tool for bearing faults analysis.

When an outer-race or inner-race bearing fault occurs, a periodic impact is generated, which excites the
resonance frequency of the mechanical system. Consequently, a spectral analysis of the recorded vibratory
signal reveals that each element of the bearing is responsible for a unique frequency [1], identified as a bearing
characteristic frequency (BCF), which are ball pass frequency of inner-race (BPFI), ball pass frequency of
outer-race (BPFO), ball spin frequency (BSF), and fundamental cage frequency (FCF). However, the generated
impulses are generally weak especially at early stage of bearing fault and are hidden in noise and other vibration
sources. This makes the early fault identification more difficult.

Over the past two decades, several models of faulty bearing vibration signals have been proposed in order
to validate the effectiveness of various signal processing methods and techniques. McFadden has proposed a
model produced by a single point defect [2]. And soon afterwards, the model was extended to describe multiple
point defects [3]. Braun’s [1] has described the mechanism of the bearing signature generation, considering
the effect of localised and distributed defect. To give the bearing signature signal a better shape and be more
realistic, Braun introduced randomness on phase and amplitude in his model and multiplied each sinusoid with
the Heaviside function. This allows the model to include the random slip of the element and the cage, for which
it has been successfully used [4, 5, 6, 7].

In nature, many processes are generated by time-varying parameters, which results in fluctuation and ran-
domness. Some processes encountered in different field, such as communication, telemetry, radar, sonar, as-
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tronomy, and mechanics [8, 9, 10, 11], give rise to random data with time-periodic statistical characteristics,
which are known as cyclostationary (CS) processes. As a matter of fact, cyclostationarity is useful to enhance
the accuracy and reliabilities of information gleaned from noisy data sets. Thanks to Gardner and al. [12, 13] a
lot of work and results were established, which has lead to greater achievement in the field of CS analysis .

A bearing fault vibration signal is, in fact, a series of quasi-periodic impact of random amplitude, modulated
with the charge distribution in the case of inner-race defect. It is well known that the combination of periodic
deterministic and random phenomena gives rise to a CS process. So, one can assume that bearing fault vibration
signal is CS. McCormick [14] was the first to model bearing fault signal as CS process. Antoni and Randall
[15] used the uncertainties of the magnitude and the phase of each impact, to describe cyclostationarity in
faulty bearing signal. They have demonstrated that a bearing fault could be modelled as 2nd order CS process.
Although, the signals from a localised fault in a bearing are not truly CS, but could be described as pseudo−
cyclostationary [16, 17, 11]. After that, Antoni [18] proposed new methodologies for cyclostationarity-based
diagnostics of rolling-element bearings. The statistics are obtained by ensemble averaging over an ensemble of
realisations (detail are presented in [19, 20]).

To our knowledge, all related works remain general whatever the nature of the bearing default and with
limited theoretical cyclic analysis. So, this work comes to complete previous related works and presents a
detailed and coherent framework allowing the correct description of inner-race and outer-race bearing fault
signals at the end of diagnostic. Actually, a good comprehension of bearing fault mechanism can allow the
development of efficient algorithms for fault identification. Thus, this model and the corresponding theoretical
development can be used as platform for deconvolution, blind source separation, . . .

The remaining parts of this paper are outlined as follow. Section 2 concerns the theoretical framework,
which sums up two parts. The first part presents the proposed model and the basic theoretical background
concerning the mechanism of the bearing signature generation. In the second part, a CS analysis is established
to validate the proposed model. To give our theoretical work much credibility some simulations on synthetic and
real faulty bearing vibration signals are presented and studied in section 3. At last, section 4 gives conclusions.

2 Theoretical framework

2.1 Proposed mathematical model of faulty bearing signal

This section introduces an analytical model to generate inner-race and outer-race bearing fault signals. Hav-
ing a consistent mathematical model that can simulate the vibration signals, with a certain degree of accuracy,
is essential for various reasons. Firstly, modelling requires a better understanding of the phenomenon and an
extensive background knowledge. Secondly, modelling helps in formalising and validating existing techniques
and leads to the creation of new diagnostic tools.

According to McFadden [2], when the rolling element of bearing strikes a localised defect, an impact is
generated. This impact is represented by the impulse function δ . To describe the severity of the defect the
impulse function is randomly weighted by the coefficient ai, which is supposed to follow a Gaussian law
N (µa,σ

2
a ), where i denote the impact indices. The period between impacts is represented by λ .

For several impact
∑

i
aiδ (t− iλ ) (1)

The frequency of the impact fimp = 1/λ depends on the location of the defect. This frequency can be one
of the bearing characteristic frequency, BPFI, BPFO, BSF, which are given by the following relationships:

BPFI =
Z

2 fsh

(
1+

d
D

cosγ

)
(2)

BPFO =
Z

2 fsh

(
1− d

D
cosγ

)
(3)

BSF =
D fsh

d

(
1− d2

D2 cos2
γ

)
(4)

Where fsh is the shaft rotation frequency in Hz, d the diameter of rolling element,D the pitch diameter, Z is the
number of rolling elements, and γ is the contact angle.
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However, in the case of inner-race faults, the load distribution is taken into consideration. As shown in Fig.
1, the severity of the impact force changes periodically with every bearing revolution [16]. Consequently, the
impulses generated by the defect will be modulated by the load distribution as follows:

∑i aiδ (t− iλ )(1+ k cos(2π fsht)) = ∑i ai(1+ k cos(2π fshiλ ))δ (t− iλ ) (5)

Where fsh = 1/T is the rotation frequency, and k represents the modulation rate. For a outer-race bearing
defect the modulation rate k is null i.e k = 0.

Figure 1 – The load disribution modulation for inner-race bearing fault.

Because of the distance between the accelerometer and the faulty bearing, the measured vibratory signal
corresponds to the convolution between the modulated shocks and the impulse response of the mechanical
structure. The impulse response h(t) is generally assumed to be an exponential decaying sinusoid, oscillating
with the resonance frequency fres, and damped by the damping ratio ξ , with random phase fluctuation ϕi. Thus,

the impulse response is given by the following relationship: h(t) = e
−ξ√
1+ξ 2 2π frest

cos(2π frest−ϕi)u(t) where the
Heaviside function is denoted by u(t). Finally, the observed faulty bearing signal for a single impact is given
by:

ai(1+ k cos(2π fshiλ )) e
−ξ√
1+ξ 2 2π fres(t−iλ )

cos(2π fres(t− iλ ))−ϕi)u(t− iλ ) (6)

As the bearing rotates this process will be repeated for every impact as illustrated in Fig. 2. Thus, the final
model is summarised as follows:

xb(t) = ∑i ai(1+ k cos(2π fshiλ )) e
−ξ√
1+ξ 2 2π fres(t−iλ )

cos(2π fres(t− iλ ))−ϕi)u(t− iλ ) (7)

(a) (b) (c)

Figure 2 – Synthesis of the vibration signal produced by a localised bearing fault: (a) Series of impact forces
with slight random fluctuations in their magnitudes. (b) Series of impact forces modulated by the charge
distribution. (c) The measured noiseless signal.

The random fluctuation in xb(t) rises from the parameters ai and ϕi. In fact, the amplitude ai changes
from one impact to another, and follows a Gaussian law N (µa,σ

2
a ). Whereas the random character of the

phase ϕi, is due to the slip of rolling elements and other reasons. ϕi follows a uniform law inside the interval
[ϕ0−∆ϕ,ϕ0 +∆ϕ] with ∆ϕ ∈ [0,π], and ϕ0 is the balls initial phase.

The simulation of the proposed model of Eq. (7) is illustrated in Fig. 3, where the parameters values are
listed in Tab. 1. Furthermore, the sampling frequency fs is set to 10000 Hz.

As generally, the combination of periodic deterministic and random phenomena gives rise to a CS process.
So, one can assume that bearing fault signals signal is CS. To confirm this hypothesis, we propose in the next
section to prove analytically the property of wide-sense cyclostationarity of the model of Eq. (7) by computing
cyclic statistics which are robust to stationary noise.
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Parameter µa (mv) σa (mv) k fsh (Hz) λ (s) fres (Hz) ∆ϕ (rad) ξ ϕ0 (rad)
value 15 0.5 0.95 20 0.0105 1500 Hz π/10 0.08 0.02

Table 1 – Model parameters values.

Figure 3 – Realistic synthetic bearing signal of inner-race fault.

2.2 Cyclic analysis

When a periodic phenomenon is affected by random fluctuation, it gives rise to CS process. Bearing fault
vibration are known for presenting second order cyclostationarity [15]. Thus, a theoretical work has been
established to prove the cyclostationarity of the proposed model in Eq. (7) .

Let x be a time dependent signal. x is said to be first-order CS if its first-order moment mx(t) is periodic
with period T0 [12] : mx(t) = E(x(t)) = mx(t +T0). The First-order moment of the signal xb(t) given by the
model of Eq. (7):

mxb(t) =
sin(∆ϕ)

∆ϕ
∑i µa(1+ k cos(2π fshiλ )) e

−ξ√
1+ξ 2 2π fres(t−iλ )

cos(2π fres(t− iλ )−ϕ0)u(t− iλ ) (8)

From the equation above we can figure out that the first moment is not periodic with either λ or T . However,
mxb(t) is T1-periodic where T1 = MT = Nλ represent the lowest common multiple between T and λ . Hence,
the periodicity of the first moment : mxb(t +T1) = mxb(t), affirm that xb(t) is 1st order CS and T1 represent the
fundamental cyclic period. It should be noted that when ∆ϕ is close to 0, mxb(t) converges to 0.

The process x is said to be wide sense CS if its mean mx(t) and time-varying autocorrelation function
Rx(t,τ) = E{x(t− τ/2)x∗(t + τ/2)}, where the superscript * denotes complex conjugation, are periodic with
the same period [12].

The time-varying autocorrelation function for the signal of the proposed model of Eq. (7), after removing
the cyclic mean, is given by:

Rxb(t,τ) = ∑i
σ2

a
2 (1+ k2

2 cos(2π fshτ)+ k
2 cos(π fshτ)cos(2π fshiλ ))+ k2

2 cos(4π fshiλ )) e
−ξ√
1+ξ 2 4π fres(t−iλ )

[cos(2π fresτ)+
sin(2∆ϕ)

2∆ϕ
cos(4π fres(t− iλ )−2ϕ0)]u(t− iλ − |τ|2 )

(9)
As shown in Fig. 4 the time-varying autocorrelation function Rx(t,τ) is T1-periodic too, which confirms the

wide sense CS of xb.
In the case of CS signals, in which the time-varying autocorrelation is T-periodic function, Rx(t,τ) can be

represented by Fourier series Rx(t,τ) =∑α Rα
x (τ)e

j2παt , where Rα
x is the cyclic autocorrelation function (CAF).

The Fourier expansion of Rx(t,τ) can be expressed as :
Rα

xb
(τ) = ∑i

σ2
a

2λ
[(1+ k2

2 cos(2π fshτ))G(α,τ)+ k
4 cos(π fshτ)(G(α + fsh,τ)+G(α− fsh,τ))

+ k2

4 (G(α +2 fsh,τ)+G(α−2 fsh,τ))]δ (α− iλ−1)

G(α,τ) = e−(B4π fres+ j2πα)|τ|/2
(

cos(2π fresτ)
B4π fres+ j2πα

+ sin(2∆ϕ)
4∆ϕ

(
e j(4π fres|τ|/2−2ϕ0)

B4π fres− j4π( fres−α) +
e− j(4π fres|τ|/2−2ϕ0)

B4π fres+ j4π( fres+α)

)) (10)

where B = ξ/
√

1+ξ 2.

4



(a) (b)

Figure 4 – Numerical estimations of : (a) First order moment for inner-race bearing fault. (b) Time-varying
autocorrelation for inner-race bearing fault for τ = 0.

Rα
xb
(τ) is α-discrete because Rxb(t,τ) is T1-periodic in time. Thus, the CAF is non zero only for the har-

monics of α1 = 1/T1. It should be noted that the amplitude variance σa, the phase ∆ϕ , and the modula-
tion rate k affect the cyclostationarity of the signal. Fig. 5-(a), illustrates the CAF of Eq. (10) for time lag
τ ∈ [−0.003,0.003]. The CAF increases as the time-lag moves toward 0, the same process goes for α , where
we find the maximum of Rα

xb
(τ) in the center (α = 0,τ = 0). Furthermore, high values of Rα

xb
(τ) are detected

for α =±2 fres, where fres represent the bearing resonance frequency.

(a) (b)

Figure 5 – CAF for inner-race bearing fault : (a) Contour . (b) Upscaled CAF in α-plan for τ = 0.

As a matching with Eq. (10), the CAF is non-zero for fimp = 1/λ multiples and its sidebands at (i fimp± fsh)
and (i fimp± 2 fsh) frequencies, which are α1 multiples. Hence, the CAF is α-discretized by the fundamental
cyclic frequency α1 .The modulation effect is shown in Fig. 5-(b) where we find, fimp distance between patterns,
which represents the impact frequency, and five spikes in each pattern separated with fsh. Those spikes around
the central spikes are due to the term (1+ kcos(2π fshiλ )) in our model represented by Eq. (7). The fact that
there is central spikes for the multiples of α = 95Hz, where fimp = 95Hz represent BPFI of the bearing, make
it clear that α = fimp is the true cyclic period.

The cyclic spectral correlation (SCD) represents another important second-order cyclic statistic allowing
the characterization in the (α, f )-plan. Gardner [12] defined Sα

xb
( f ) as the Fourier transform of the CAF with

respect to τ : Sα
xb
( f ) = F(Rα

xb
(τ)), where F denote the Fourier transform.

The Fourier transform of Rα
xb
(τ) is equal to:
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Sα
xb
( f ) = ∑i

σ2
a

2λ
[G(α, f )+ k2

4 (G(α, f − fsh)+G(α, f + fsh))+
k
8(G(α + fsh, f − fsh)+G(α− fsh, f − fsh)

+G(α + fsh, f + fsh)+G(α− fsh, f + fsh))+
k2

4 (G(α +2 fsh, f )+G(α−2 fsh, f ))]δ (α− iλ−1)

G(α, f ) = 1
B2π fres+ jπα

(
1

B2π fres− j2π( f− fres−α/2) +
1

B2π fres− j2π( f+ fres−α/2) +
1

B2π fres+ j2π( f− fres+α/2) +
1

B2π fres+ j2π( f+ fres+α/2)

)
+ sin(2∆ϕ)

2∆ϕ

(
e− j2ϕ0

B2π fres− j2π( fres−α/2)

(
1

B2π fres− j2π( f+ fres−α/2) +
1

B2π fres+ j2π( f− fres+α/2)

))
+ sin(2∆ϕ)

2∆ϕ

(
e j2ϕ0

B2π fres− j2π( fres+α/2)

(
1

B2π fres− j2π( f+ fres+α/2) +
1

B2π fres+ j2π( f− fres−α/2)

))
(11)

Sα
xb
( f ) is α-discrete with non zero values for α = iλ−1 and its sidebands distanced by ± fsh and ±2 fsh . It

should be noted that Sα
xb
( f ) is f -continous and present peaks in ± fres. Fig. 6-(a) reports the estimation of the

SCD function . As illustrated in the figure, our model is proved as a second order CS process. The non-zero
values of SCD are distributed in 4 regions, with maximums for f =± fres. The two other regions are localised
near α =±2 fres. Furthermore, SCD is reduced to the power spectral density when α = 0.

As the CAF, the SCD is discretized in α-plan and is non-zero for the multiple of α1. As shown in Fig.
6-(b), for f = fres we have the same distances between patterns 1/λ , and 1/T between the five spikes in each
pattern.

(a) (b)

Figure 6 – SCD estimation for inner-race bearing fault: (a) Contour . (b) Upscaled SCD in α-plan for f = fres .

3 Simulation and experimental results

3.1 Synthetic bearing fault simulation

A simulation study is performed to illustrate the effectiveness of different bearing fault condition. For this
purpose, two realistic synthetic signals are generated from Eq. (7) representing respectively inner-race fault
bearing and outer-race fault bearing. The model parameters in Tab. 2, for both generated signal, were chosen to
be similar with different modulation rate k, and different impact frequency fimp. The outer-race bearing and the
inner-race fault frequency are respectively equal to fimp = 82 Hz and fimp = 120 Hz. The sampling frequency
is set to fs = 48828Hz. Furthermore, some Gaussian noise is added to the signal such that the SNR is set to 10
dB.

Parameter µa (mv) σa (mv) fsh (Hz) fres (Hz) ∆ϕ (rad) ξ ϕ0 (rad)
value 7 1.5 25 1300 π/20 0.08 0.02

Table 2 – Model parameters values.

The simulated signals generated from the model of Eq. (7) are displayed in Fig. 7, where the modulation
by the load distribution is visible.

The Fig. 8 gives the CAF estimation of both generated signals. The discretization in α − plan proves the
cyclostationarity of the simulated inner-race and outer-race fault. As a matter of fact, The CAF estimation
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(a) (b)

Figure 7 – Synthetic bearing signals: (a) Outer-race fault (k = 0, fimp = 82Hz). (b) Inner-race fault (k =
0.9, fimp = 120Hz).

values is higher in the case of the generated inner-race fault bearing. This particularity can be explained by Eq.
(10), where the terms (1+ k2/2cos(2π fshτ)), (k/4cos(π fshτ)), and (k2/4) increases as the modulation rate k
increases with respect to τ . Furthermore, the CAF estimations are maximum for α = 0 and present high peaks
also for α =±2 fres, where fres is the resonance frequency.

(a) (b)

Figure 8 – CAF estimation for synthetic bearing signals: (a) Outer-race fault (k=0). (b) Inner-race fault
(k=0.65).

(a) (b)

Figure 9 – SCD estimation for synthetic bearing signals: (a) Outer-race fault (k=0). (b) Inner-race fault
(k=0.65).

As illustrated by Fig. 9, the two SCD estimations are identical where the the high values are visible around
α =±2 fres along f = 0Hz axis, and f =± fres in α = 0Hz axis. Due to the term (k2/4),and (k/8) in Eq. (11)
the modulation rate k increases the SCD estimation for inner-race bearing fault. However, in Fig. 10 the two
upscaled SCD estimation in α-plan are different. For the outer-race bearing fault the modulation rate k is 0,
which reduces the harmonics amplitude to 0. Therefore, The cyclic period will be the impact frequency fimp.
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(a) (b)

Figure 10 – Upscaled SCD estimation for synthetic bearing signals: (a) Outer-race fault (k=0). (b) Inner-race
fault (k=0.65).

3.2 Experimental results

This section aims at checking how the proposed model of Eq. (7) and the related cyclic statistics apply to
real faulty bearing signals. In this experiment, a ball bearing has been overloaded on a test rig so that inner-race
faults have developed. The settings of the experiment are listed in Tab. 3, and all experimental data of the
real bearing signal has been assembled and prepared on behalf of MFPT, under the supervision of Dr. Eric
Bechhoefer [21].

Parameter value
Speed of shaft (Hz) 25
Bearing roller diameter (in) 0.235
Pitch circle diameter (in) 1.245
Number of rolling elements 8
Contact angle 0
Load ( lbs ) 0
Sampling frequency (kHz) 48.828
Record length (sample) 10000

Table 3 – Bearing characteristics and experiment settings.

The real inner-race bearing signal is displayed in Fig. 11, where the modulation by the load distribution is
visible.

Figure 11 – Real inner-race bearing fault.

In similarity with the theoretical work, the CAF estimation of real bearing signal is maximum for (α =
0,τ = 0), and decreases as we move away from the centre (Fig. 12-a). In fact, the CAF is non-zero for other
values than α = 0, which proves the cyclostationarity of the signal. Moreover, as described by Eq. (10) the
CAF of the signal is α-discretized and presents high values around α = 0, and α = ± fres, where fres is the
resonance frequency.

In the case of inner-race bearing fault, the modulation ratio is different from zero which results, as described
in Fig. 12-b, in four harmonics around each central spike distanced by the rotation frequency fsh. Those central
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(a) (b)

Figure 12 – CAF estimation of real inner-race bearing fault: (a) CAF estimation for τ ∈ [−0.0006,0.0006]. (b)
Upscaled CAF in α-plan for τ = 0

spikes are the multiples of the impact frequency fimp. The impact frequency is visibly identified and denotes
the BPFI of the studied bearing, which is around fimp = 117Hz.

It should be noted that the background noise is not stationary due to other machine vibration interference.
As a result, the noise is not reduced by the cyclic statistical tools, which are robust to stationary noise. However,
the results of this section are interesting and present similarities with our model, which proves the effectiveness
of the proposed model for both inner-race and outer-race bearing fault vibrations.

4 conclusion

This paper proposes a new model for both inner-race and outer-race bearing fault vibration. This model
is showed to be wide-sense CS process. Actually, the cyclostationarity of the proposed model is sensitive to
the amplitude variance σa, the phase ∆ϕ , and the modulation rate k. Due to CS tools, especially the CAF and
SCD, hidden information can be extracted, which leads to fault detection despite stationary random noise. In
fact, both simulated and experimental studies tools verify that, for low noise ratio, the CS tools can effectively
extract the fault features of bearing. As a result, the proposed model presents similar statistical proprieties
with the real inner-race bearing fault vibration, which confirms its robustness and coherence. Therefore, the
proposed model could be used not only to validate existing techniques but also to develop new diagnostic tools
in the future.

A future work will address the problem of deconvolution of faulty bearing signals, exploiting the cyclosta-
tionarity and the sparsity, in order to extract the exact fault frequency and other useful parameters for diagnostic
tools.
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