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Abstract 
    The authors have analysed in a previous paper the use of the combinational resonance vibrations, excited 

by diagnostic forces at suitable frequencies, for detecting the crack signature. The conditions where this 

technique can be applied successfully are analysed in this paper. Applying diagnostic forces to real industrial 

machinery is feasible only if the machine is equipped with an electromagnetic exciter for vibration control or 

with magnetic bearing. In this case, considering an industrial machine, generally equipped with oil film 

bearings, with well damped critical speeds, it is necessary to know which force and which frequency is 

required for generating a measurable peak as combination resonance. In this paper, a quasi linear approach 

based on the harmonic balance in the frequency domain is presented that allows to derive simple expressions 

of the equivalent forces which generate combination frequency vibrations, as well as their resulting 

amplitudes. It will be shown that these forces are proportional to the crack induced stiffness variation and to 

the vibration amplitudes generated by the diagnostic force in correspondence of the crack. These simple 

expressions allow to evaluate the possibility and effectiveness of this crack identification methodology based 

on diagnostic force application. In the inverse problem, these expressions could be further used in a model 

based approach for identifying cracks from measured combination frequency vibrations. 

 
1 Introduction 

Shaft crack detection is an important issue in rotor dynamics. Early recognition of cracks in rotating 

shafts can prevent catastrophic failures. Thus, accurate monitoring is required for industrial rotating 

machinery such as turbines, compressors, pumps, and generators. There are several SHM techniques 

proposed in the literature for crack detection in rotating machines mainly based on vibration measurements. 

Although widely used in industry, when applied under non-ideal conditions such techniques can only detect 

cracks that eventually have already spread significantly along the cross section of the shaft (usually above 

40% of its diameter). Therefore, currently, the researchers' attention is turning to more sophisticated methods 

capable of identifying incipient cracks (cracks that spread up to 25% of shaft diameter), that are hardly 

observable in classical vibration analysis during normal operating conditions. 

Various structural health monitoring (SHM) techniques devoted to crack detection in rotating machines 

have been proposed in the last decade. Changes in 1X and 2X vibration amplitudes and phases are 

considered the primary indicators of crack presence (see e.g. [1], [2]). Among several different approaches 

described in a rich literature for crack detection in rotating shafts, the SHM methodologies that use harmonic 

excitations as diagnostic forces has attracted the attention of several researchers and two interesting results 

are here recalled. The purpose of applying the diagnostic forces in a cracked shaft at  different frequencies 

from the rotation speed is to excite combination frequency vibrations that are measurable when the 
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combination frequency equals one of the natural frequencies of the system. These conditions are then called     

combination resonances. 

 A theoretical analysis considering a simple rotor model with 2 degrees of freedom containing a 

breathing crack is presented in [3]. The method of multiple scales was used to solve the equations of motion 

of the system, in which the stiffness of the shaft was affected by the nonlinearity (i.e., the breathing crack). 

The so-called combination resonances were defined in the context of rotating cracked shafts. It was shown 

that the vibration amplitudes associated with the combination resonances are directly proportional to the time 

dependent stiffness, i.e., to the crack depth. An accurate numerical and analytical analyses on a cracked 

Jeffcott rotor is presented further in [4]. The stiffness of the cracked shaft has been modelled by using two 

different approaches, namely: i) a piecewise linear stiffness and ii) by using power series. The effects of the 

excitation intensity (diagnostic forces) on the forward and backward whirl vibration responses of the rotor 

system at the combination resonances were evaluated according to the crack severity. An experimental 

validation of the proposed method was also presented, in which the combination resonances were 

demonstrated on the vibration responses of the considered rotating machine. More recently the possibility of 

identifying the severity of transverse cracks (i.e., position and depth) in rotating shafts by using the so-called 

diagnostic forces and combination resonances has been analysed in [5]. The frequencies of the diagnostic 

forces were determined by using the method of multiple scales. This approach was applied to a rotor test rig 

model composed by a horizontal shaft, two rigid discs, two self-alignment ball bearings, and an 

electromagnetic actuator used to introduce the harmonic excitations. The horizontal vibration responses of 

the rotating machine were measured by using displacement sensors located close to the discs. The dynamic 

behaviour of the system was investigated considering both the breathing and open crack models. The crack 

models were formulated from the Mayes model (breathing crack described in [6]) combined with the linear 

fracture mechanics approach (breathing and open cracks). Vibration responses in the time domain have been 

determined for different crack positions and depths. In a given test case, the proposed methodology was able 

to identify, with good accuracy, the severity of the crack by using the Differential Evolution optimization 

method (described in [7]). In that contribution, constant rotation speed and various diagnostic excitations at 

frequencies suitable for exciting two combination resonances were considered.  

However, the problem consists in determining the amplitude and frequency of the diagnostic forces to 

generate measurable peaks on the vibration spectrum at the combination resonances. This is an important 

issue, mainly when the proposed technique is applied to industrial machinery, due to the limitations 

regarding the applicable force amplitude and position. 

Therefore, the vibration response of the system at the combination resonances depends on the damping, 

the location of the crack along the shaft, the locations where the diagnostic forces are applied, and the 

amplitude of the diagnostic forces. In this paper, the dynamic behaviour of a cracked rotating shaft is 

analysed to determine the most favourable conditions to apply the mentioned SHM technique by using the 

harmonic balance approach. This quasi-linear methodology is able to determine the vibration amplitudes and 

phase angles at the combination resonances generated by the presence of the crack when external diagnostic 

forces are applied to the rotor system. Additionally, the obtained results are compared with the ones 

determined from the trapezoidal rule integration scheme, which was coupled with the Newton-Raphson 

iterative method for nonlinear analysis, used also in [5].  

 

2 Combination frequency vibrations 

The purpose of applying to a cracked rotating shaft diagnostic forces at frequencies Ωd different from 

rotational speed frequency Ω, consists in exciting “combination frequency vibrations” at frequencies which 

are combinations of the two frequencies, that appear only in the presence of a transverse crack. In order to 

emphasize the occurrence of the combination frequency vibrations, it is useful to exploit the possibility of 

resonant conditions when one of the combination frequencies equals one of the natural frequencies of the 

shaft. This condition is then called combinational resonance. The high magnification factor in resonance 

allows then to distinguish the resonance peak from other vibration components and from noise. The natural 

frequencies of the shaft must be known so that the diagnostic force frequency can be selected in advance. 

But, which should be the diagnostic force amplitude in order to generate in the measuring points a 
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measurable peak in the vibration spectrum? This is an important issue when this technique should be applied 

to industrial machinery where limitations in applicable force amplitude may exist. The response of the 

system depends on the damping, on the location of the crack in the shaft and on the location where the 

diagnostic force is applied.    

Applying diagnostic forces to real industrial machinery is feasible only if the machine is equipped with 

an electromagnetic exciter for vibration control or with magnetic bearing, or if at the design stage of the 

machine the possibility of applying electromagnetic forces in at least one location of the shaft-line has been 

foreseen. 

In this case, considering an industrial machine, generally equipped with oil film bearings, operating at 

rated speed, with well damped critical speeds, it would be interesting to know in advance which force is 

required for generating a measurable peak as combination resonance, in the proximity probes that are 

installed generally in correspondence of the bearings.  

It will be shown that combination frequency vibrations can be calculated quite easily assuming linearity 

of the system and applying the harmonic balance approach in the frequency domain.  

Combination frequency vibrations are generated already by the rotating unbalance, combined to the 

rotating crack, but combination resonance conditions can hardly be attained since rotational speed cannot be 

changed ad libitum. The frequency of the external diagnostic force can instead be changed generally in a 

wide range according to the specification of the actuator, so that resonant conditions can be attained.  The 

combination frequency vibration amplitudes depend on the crack induced stiffness variation and on the 

vibration amplitudes generated by the diagnostic force in correspondence of the crack. In a first step the 

vibrations generated by the diagnostic force in correspondence of the crack are calculated assuming the shaft 

in its original condition without crack. Or more accurately introducing in the stiffness matrix of the shaft the 

mean stiffness of the cracked beam element, instead of the full stiffness of the un-cracked beam element.  

Then the equivalent forces can be evaluated and applied to the finite element model (FE model) of the shaft, 

and the combination frequency vibrations are calculated. 

The vibration amplitudes will then be compared to the vibrations of the cracked rotor computed with the 

nonlinear approach in the time domain. The model used for the comparison is that of [5]. 

Since in reality the excitation of combination frequency vibrations is a nonlinear effect in a linear system, 

the proposed approach is a quasi-linear approach that may require some iteration in the evaluation of the 

vibrations. 

Also, the inverse problem of identification of crack depth and position from combination frequency 

vibrations, and from other crack related symptoms, by use of a well-established model based diagnostic 

approach in the frequency domain [1], is easily feasible since these vibrations, according to the present 

approach, are generated by some equivalent external forces that depend of the crack depth and of the 

diagnostic excitation strength. 

Cracks may be always open cracks or breathing cracks. Shafts affected by open cracks behave according 

linear systems with parametric excitation. Shafts with breathing cracks may also be considered linear 

systems when breathing is weight dominated, as it occurs in horizontal rotating heavy shafts. When breathing 

is dominated by vibrations as it may occur in vertical shafts or in horizontal light and weakly damped shafts, 

then the system becomes really non-linear, as shown in [1].  

In this paper, we restrict the analysis to linear systems with parametric excitation. Thus, for modelling 

the crack the FLEX model proposed in [1] has been used. 

 

2.1 Development of the equation of motion 

 Let’s assume a FE model for the system composed by the shaft, the bearings and the supporting 

structure, in which the crack is modelled (according to [1]) by a small “equivalent” axially unsymmetrical 

beam element that generates different stiffness according to the rotating principal axes, as shown in Fig. 1.  

This axial asymmetry and the length lc of the equivalent beam are functions of the depth of the crack. 
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Figure 1: Cracked element configuration (from [1]) 

 

 With reference to a fixed coordinate system the stiffness of the cracked beam element becomes variable 

function of the angular position of the shaft. As said before this result is valid for open cracks and for so 

called weight dominated breathing cracks, in which the opening and closing of the crack during one rotation 

is forced by the shaft weight. This condition is generally satisfied for horizontal axis industrial machinery or 

laboratory test rigs. If this is not the case, as in vertical shafts or lightly loaded and poorly damped shafts, as 

shown in [1], the crack breathing and the corresponding stiffness then depend on the vibration itself so that 

the behaviour becomes really non-linear.    

Assuming weight dominated breathing, the equation of motion of the shaft can be written as follows: 

 

M x” + (R+Gyr) x’ + K(Ωt) x = Mg + Ue
iΩt

 + Fd cosΩdt                                                                         (1)  

    

where x is the vector of the system node displacements (4 degrees of freedom per node), M, R, and Gyr are 

respectively the mass, damping, and gyroscopic matrices, respectively, K(Ωt) is the stiffness matrix that 

includes the stiffness of the cracked beam element (which depends on the angular position of the shaft), x is 

the vector of displacements of the nodes of the system, Mg is the vector of weight forces given by the mass 

matrix multiplied by gravity vector g, U is the unbalance (rotating with shaft), Fd and Ωd are, respectively, 

the diagnostic force amplitude and the frequency of the assumed sinusoidal diagnostic force, and Ω is the 

shaft rotational frequency. 

Once the rotation dependent stiffness K(Ωt) is defined, eq. (1) can be solved in the time domain for each 

rotational speed Ω and diagnostic frequency Ωd, and all vibration components including the combination 

frequency components can be found in the vibration spectrum.  This has been done e.g. in [5].  

In this paper an approximated method, based on a harmonic balance approach, is presented that allows to 

calculate in the frequency domain all the above components. The advantage of the proposed approach is that 

simple formulas allow to forecast the amplitude of the excited components, as function of the crack depth, of 

the diagnostic force amplitude and of the dynamic amplification factor at the combination frequency.  

In the inverse problem of crack identification from combination frequency components, the same 

formulas can be used in a model based identification process in the frequency domain based on a rather 

robust least square approach. 

 

2.2 Harmonic balance approach development 

     The periodical stiffness K(Ωt) that appears in eq. (1) can be developed as Fourier series, as follows. 

In the case of an always open non-breathing crack, neglecting some smaller component at higher frequency 

that appear with the Timoshenko beam model (and not with the Bernoulli beam model), the variable stiffness 

is composed only by a constant term, the mean stiffness Km, and by the second harmonic component ΔK2: 

 

K(Ωt) = Km + ΔK2 cos(2Ωt + β) = Km + 1/2(ΔK2e
i2Ωt

+ ΔK2
*
e

-i2Ωt
)        (2) 

 

(letters in bold indicate complex quantities and star * indicates complex conjugate quantity) 

 

In the case of the breathing crack, all different harmonic components will arise, of which only the first 

three harmonic components ΔK1, ΔK2, and ΔK3  are significant, besides the constant term  Km: 

 

K(Ωt) = Km + 1/2 (ΔK1e
iΩt

+ ΔK1
*
e

-iΩt
) + 1/2(ΔK2e

i2Ωt
+ ΔK2

*
e

-i2Ωt
) +1/2 (ΔK3e

i3Ωt
+ ΔK3

*
e

-i3Ωt
)                (3)
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ΔK1 is the complex 1xrev shaft stiffness variation, as it results from Fourier analysis, and ΔK1
*
 is its complex 

conjugate. Similarly, for the 2xrev and 3xrev complex components of the stiffness variation, that arise from a 

breathing crack. 

Assuming the system linear, the displacement results from superposition of different components: 

 

The static component xst = Km
-1

 Mg                                (4.1) 

The 1xrev component   x(Ωt) = X1 cos(Ωt+α) =  (X1e
iΩt

+ X1
*
e

-iΩt
)/2                                                           (4.2) 

The 2xrev component   x(2Ωt) = X2 cos(2Ωt+β) = (X2e
i2Ωt

+ X2
*
e

-i2Ωt
)/2                                                      (4.3) 

The 3xrev component    x(3Ωt) = X3 cos(3Ωt+δ) = (X3e
i3Ωt

+ X3
*
e

-i3Ωt
)/2                                                     (4.4) 

The diagnostic frequency component x(Ωdt) = Xdcos(Ωdt+φ) =  (Xde
iΩdt

+ Xd
*
e

-iΩdt
)/2 

 

In the first approximation, the displacement is given by   x1= xst + x(Ωt) + x(2Ωt) + x(3Ωt) + x(Ωdt) 

 

Let’s consider now the simpler case of the non-breathing open crack. Open cracks are easily obtained in 

laboratory by a small transverse cut machined in the shaft. 

Eq. (1) combined with eq. (2) in this case becomes: 

 

M x1” + (R+Gyr) x1’ + Km x1  = Mg + Ue
iΩt

 + ½ Fd( e
iΩdt

 + e
-iΩdt

) – ½ (ΔK2e
i2Ωt

+ ΔK2
*
e

-i2Ωt
) x1                       (5) 

 

By means of the harmonic balance approach we are able to estimate separately in x1 the amplitudes of 

the components at the different frequencies. The stiffness variation ΔK2 is very small with respect to the 

mean stiffness Km, at least when the crack depth is small, therefore we assume for the 1.st iteration ΔK2 

negligible with respect to Km. Substituting (4), and separating the dynamic components x1d from static one 

xst  

 

x1d = x1 - xst              (6) 

  

we obtain: 

 

M x1d” + (R+Gyr) x1d’ + Km  x1d = Ue
iΩt

 + ½ Fd( e
iΩdt

 + e
-iΩdt

) – ½ (ΔK2e
i2Ωt

+ ΔK2
*
e

-i2Ωt
)(xst + x1d)                 (7)

 

 

x1d is generally small with respect to xst, and can be neglected in the last term of eq. (7) in this initial 

step. Then following vibration components will be obtained: 

 

x1d  =  x1d(Ω) + x1d(Ωd) + x1d(2Ω)           (8) 

 

2.3 Evaluation of the different component amplitudes 

Remember that the variation of stiffness due to the crack ΔK2 develop in correspondence of the crack 

position, consequently also xst and x1d in eq. (7) must be evaluated in correspondence of the crack position.     

As long as the crack is small the shaft stiffness is affected very little by the crack. In shafts affected by a 

transverse open crack with a depth of 25% of the diameter, the stiffness variation due to the crack is only 

±1% of the mean stiffness, as shown in [1]. In the 1.st step the vibration components and their amplitudes, 

disregarding all dynamic amplification factors that are function of the different frequencies, are as follows: 

 

x1d(Ω) = X1e
iΩt

 due to the unbalance, where   X1 =  Km
-1

U                 (9.1) 

 

x1d(2Ω) = ½ (X2e
i2Ωt

+ X2
*
e

-i2Ωt
)  due to the ΔK2 of the crack, where  X2 =  Km

-1
 ΔK2 Km

-1
Mg                 (9.2) 
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x1d(Ωd) = ½ (Xde
iΩdt

+ Xd
*
e

-iΩdt
) due to the diagnostic force, where Xd = Km

-1
 Fd                                        (9.3)

   

Now we can refine the solution and calculate the last term in eq. (6), which generates, as 1.st iteration, 

following additional equivalent exciting forces which will generate additional vibration components: 

 

a) equivalent force components due to unbalance and crack 

 

F(3Ω) = 1/2 ΔK2 X1 e
i3Ωt

    and           F(-Ω) =1/2 ΔK2
*
 X1 e

-iΩt
                                                                 (10.1) 

 

b) equivalent force components due to crack only 

 

F(4Ω) =1/4 ΔK2 X2 e
i4Ωt 

   and          F(-4Ω) =1/4 ΔK2
*
X2

*
e-

i4Ωt 
                                                                (10.2) 

F(0) =1/4 ΔK2
*
X2      and                   F(0) = 1/4 ΔK2X2

*
                                                        (10.3) 

 
 

c) equivalent force components due to diagnostic force and crack 

  

F(Ωd +2Ω) = 1/4 ΔK2 Xd e
i(2Ω+Ωd)t

  and     F(-Ωd -2Ω)  = 1/4 ΔK2
*
 Xd

*
e

-i(2Ω+Ωd)t
                                        (10.4) 

F(Ωd -2Ω) = 1/4 ΔK2
*
 Xd e

-i(2Ω-Ωd) t
 and    F(-Ωd +2Ω) = 1/4 ΔK2 Xd

*
e

i(2Ω-Ωd)t 
                                           (10.5) 

 

All these force components will generate additional vibration components that have to be added to the 

components obtained in the first step. F(0) generates an additional static deflection, the other forces generate 

components at frequencies 3Ω,- Ω, ± 4Ω, ±(Ωd +2Ω), ±(Ωd - 2Ω). 

Disregarding any dynamic amplification factors the amplitudes of these additional vibration components 

arising in the 1.st iteration will be equal to the inverse of the stiffness matrix Km
-1

 multiplied by the above 

equivalent force amplitudes. 

Thus the resulting vibration components will have much smaller amplitudes with respect to the 1.st step 

vibration component amplitudes, given by (9.1), (9.2) and (9.3), unless their frequencies are close to a 

natural frequency of the system which would generate high dynamic amplification factors. 

As an example, the combination vibration component amplitude at frequency (Ωd+2Ω), disregarding possible 

dynamic amplification factors, will result 

  

X(Ωd +2Ω) = 1/2 Km
-1

 ΔK2 Km
-1

 Fd                      (11) 

 

which compared to expr. (9.3) shows a consistent reduction in amplitude.                                       

In the 2.nd iteration the static deflection xst must be corrected with the additional static deflection, all 

components at frequencies Ω, 2Ω, 3Ω, 4Ω , Ωd,  Ωd +2Ω , Ωd -2Ω  must be corrected with additional terms, 

and additional terms at new frequencies such as  5Ω, 6Ω, Ωd +4Ω, Ωd -4Ω, will appear. These new additional 

terms will show amplitudes that are still much smaller with respect to the 1.st iteration vibration components, 

thus allowing to neglect them unless they are in resonant conditions. 

The development of the recursive iterations allows to calculate in the frequency domain all the vibration 

component amplitudes, with good accuracy, as will be shown in the following section where these 

amplitudes are compared with the ones determined in the frequency response curve function of the rotational 

speed, obtained from the trapezoidal rule integration scheme in the time domain, which was coupled with the 

Newton-Raphson iterative method for nonlinear analysis (as in [5]).  

Summarizing due to the presence of the last term due to the open crack in eq. (6), additional terms will 

appear in the response at following frequencies: 

 

a) Due to the weight Mg:  2Ω 

b) Due to the unbalance U: 
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            -Ω, 3Ω        1.st iteration                     

 Ω, -3Ω, 5Ω         2.nd iteration 

±Ω, 3Ω, -5Ω, 7Ω    3.rd iteration 

c) Due to the diagnostic force Fd: 

           ± (Ωd -2Ω), ±( Ωd +2Ω)    1.st iteration                                

           ±( Ωd -4Ω),± (Ωd +4Ω),± Ωd   2.nd iteration                       

           ±( Ωd -6Ω), ±( Ωd +6Ω),( Ωd -2Ω) ,( Ωd +2Ω)  3.rd iteration 

 

Let us focus on the equivalent forces due to the crack and to the diagnostic force, in order to evaluate 

the combination vibration amplitudes (disregarding once again any dynamic amplification factor). 

 

In the 1.st iteration we have following amplitudes: 

 

X(Ωd +2Ω) = X(Ωd -2Ω) = 1/2 Km
-1

 ΔK2 Km
-1

 Fd                                (12)
  

     

and in the 2.nd iteration: 

 

X(Ωd -4Ω) = X(Ωd +4Ω) = X(Ωd) = 1/4 Km
-1

 ΔK2
*
 Km

-1
 ΔK2 Km

-1
 Fd                                         (13)

         

The last component in the 2.nd iteration is an additional vibration at frequency Ωd. Therefore, the 

original values of x1d(Ωd) should be updated. This can be done in the iterative procedure, but it can be seen 

that this additional component amplitude is so small that it can easily be neglected. 

Interesting to notice is that all these vibration component amplitudes due to the diagnostic force, are 

proportional not only to the exciting force amplitude, obviously, but also to increasing powers of the product 

Km
-1
ΔK2 which for small transverse cracks is of the order of 1-2 %. These combination frequency 

components will result extremely small, therefore it will be difficult to exploit the feature of these 

combination frequency vibration components, as will be shown in the following.  

To demonstrate the above statements, the model of the test rig rotor of [5] will be used. 

 

3   Rotor test rig 
Figure 2a shows the rotor test rig used to represent the analyzed rotor system, and Figure 2b the finite 

element model of the system. The shaft has been modelled with 33 finite elements (Timoshenko’s beam 

elements with 4 degrees of freedom per node). The rotor is composed of a flexible steel shaft (length 860 

mm, diameter 17 mm) two rigid discs D1 (node #13) and D2 (node #23), (both with 150 mm diameter and 20 

mm thickness), and two self-aligning ball bearings (B1 and B2, located at nodes #4 and #31, respectively).  

Displacement sensors are mounted at nodes #8 (S8X horizontal and S8Z vertical) and #28 (S28X and S28Z) 

to measure the shaft vibration. The system is driven by an electric DC motor. 

The diagnostic force is applied in horizontal direction in correspondence of the bearing B1.  

A model updating procedure was used to obtain a representative FE model, considering the rotor system 

without crack. A heuristic optimization technique (Differential Evolution) was used to determine the 

unknown parameters of the model, namely the stiffness and damping coefficients of the bearings, the 

proportional damping added to D (coefficients γ and β; Dp = γ M + β K), and the angular stiffness kROT of the 

coupling between the electric motor and the shaft (added according the orthogonal directions X and Z of the 

node #1). The proposed identification process was performed 10 times, considering 100 individuals in the 

initial population of the optimizer. However, in this case only the regions close to the peaks associated with 

the natural frequencies were taken into account. Table 1 summarizes the parameter values determined at the 

end of the minimization process. Figure 3 presents the Campbell diagram of the rotating machine obtained 

considering the above updated parameters. 
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a)   b) 

 

Y 

Z 

X 
Y 

Z 

Fd 

S8                                           S28 

 

 
Figure 2: Rotor test rig and its FE model. 

 

Parameters Values Parameters Values Parameters Values 

*kX / B1 8.551 x 10
5
 *kX / B2 5.202 x 10

7
 γ 2.730 

*kZ / B1 1.198 x 10
6
 *kZ / B2 7.023 x 10

8
 β 4.85 x 10

-6
 

**dX / B1 7.452 **dX / B2 25.587 ***kROT 770.442 

**dZ / B1 33.679 **dZ / B2 91.033   

*k : stiffness [N/m] ; **d : damping [Ns/m] ; ***kROT : stiffness [N/rad]. 

  

Table 1: Parameters of the model defined by the model updating procedure. 

 

 
 

Figure 3: Campbell diagram of the test rig rotor. 

 

From the Campbell diagram the forward whirl natural frequencies resulted to be respectively 28.5 Hz 

(or 1715 rpm 1.st critical speed) and 98.5 Hz (or 5910 rpm 2.nd critical speed). 

It is worth mentioning that the first five natural frequencies of the cracked rotor operating at 1200 

rev/min are given by (frequencies in Hz): 26.46 ≤ Ω1n ≤ 26.71, 27.85 ≤ Ω2n ≤ 28.14, 91.03 ≤ Ω3n ≤ 91.34, 

97.43 ≤ Ω4n ≤ 97.62, and 123.76 ≤ Ω5n ≤ 123.84. The natural frequencies are split in forward and backward 

whirl frequencies and the range of variation of each natural frequency is due to the different values of the 

cracked shaft stiffness according to the two main inertia axes of the cracked cross section, namely (Km+
 

ΔK2) and (Km-
 
ΔK2). 

In the following we focus for simplicity on mean values of the natural frequencies: let consider the first 

natural frequency close to 27.0 Hz and the second close to 94.0 Hz. Resonance will occur in small frequency 

ranges around these values. 
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4   Numerical results 
Figure 4 compares the vibration responses of the rotating machine (measuring plane S28) determined by 

using the harmonic balance approach and the trapezoidal rule scheme for integration. This analysis was 

performed for the rotor under two different structural conditions. The first one comprises the shaft with a 

crack located at the element #18 with 25% depth. The second test was performed for the shaft with a crack 

located at the same element with 50% depth. The operational rotation speed of the rotor Ωd was fixed at 1200 

rev/min and the unbalance forces were disregarded in this case. The diagnostic force was applied along the X 

direction at the node #4 of the FE model, corresponding to the 1.st bearing of the shaft B2 at a frequency Ωd = 

2Ω - Ωn = (40 -28.5) Hz = 11.5 Hz, and amplitude of 25 N, in order to excite combination vibrations at a 

frequency that is close to the 1.st natural frequency). Note that the vibration responses obtained with the 2 

approaches are very close, thus validating the formulation based on the harmonic balance approach. The 

responses determined along the plane S8 are similar to the previous ones.  

  
a)    b)  

  
c) d) 
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Figure 4 – Vibration responses of the cracked rotating shaft ( ── time integration; O harmonic balance): 

a) 25% crack depth / S28X; b) 25% crack depth / S28Z; c) 50% crack depth /S28X; d) 50% crack depth / S28Z. 

 

Analising the results of the rotor with the 25% crack depth following comments can be drawn: the only 

significative vibration amplitudes are the 2Ω components due to the crack and the weight, and the 2Ω-Ωd 

component due to the crack and the diagnostic force, both roughly equal in vertical and horizontal directions,  

and the Ωd component due to the diagnostic force, obviously only in horizontal direction. The 2Ω-Ωd 

component is very close to the first natural frequency, therefore the amplitude is reather high, despite the fact 

that excitation is rather small, as shown by eq. (12). The 2Ω+Ωd component, which has the same excitation 

amplitude of the 2Ω-Ωd component is instead small because its frequency is far away from resonant 

frequency. All other components are at least one or two orders of magnitude smaller, as could have been 

forecasted from eq. (13). 
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Similar results have been obtained simulating the behaviour of the shaft with the 50% deep crack, with 

the only obvious difference that the excitation of all components related to the crack is higher. 

Summarizing Fig. 5 shows that, for the considered test case, the amplitudes of the combination 

vibrations are too small (< 1.0 μm) to be considered as significant crack symptom, despite the fact that the 

highest peak at 2Ω - Ωd is exciting the shaft first natural frequency. This might affect the applicability of the 

considered dynamic phenomenon in crack detection or identification techniques, as proposed by some 

authors. As mentioned, the problem consists in determining the amplitude and frequency of the diagnostic 

forces to generate measurable peaks along the vibration spectrum at the combination resonances. Since the 

system under consideration is linear, the vibration responses are proportional to the amplitude of the 

diagnostic force: doubling the diagnostic force amplitude also the combination vibrations amplitudes will be 

doubled, as will be shown in the following. Further the responses could be higher if we could apply the 

diagnostic force closer to the crack and with a frequency closer to the 1
st
 natural frequency of the cracked 

shaft. Thus, higher vibrations can be excited in the middle of the shaft, where the crack is located. 

Figure 5 presents the vibration responses of the rotor obtained by the sensor S28Z at the combinations 

frequencies: 2Ω + Ωd, 2Ω - Ωd, varying Ωd from 0 to 85 Hz in steps of 0.1 Hz. The diagnostic forces were 

applied always at the first bearing (B1) of the model with 25 N, 50 N, and 100 N of amplitude, separately. 

These tests were performed for the shaft with a crack always located at the same element, and with a depth 

50% of the shaft diameter. The green line in the diagrams indicates the assumed threshold (1.0 μm) of 

vibration detectability in field or in laboratory. 

 

  
a) b) 

 

Figure 5–Different combination frequency components obtained by sensor S28Z as function of Ωd 

(── F1d = 25 N; - - - F1d = 50 N; -- - -- F1d = 100 N): a) 2Ω+Ωd;  b) 2Ω - Ωd 

 

Analysing the 2Ω+Ωd combination frequency vibrations (Fig. 5a) it results that they are excited 

consistently when the diagnostic force is in resonance (at 27.0 Hz) even if the combination vibrations are not 

in resonance, as previously announced. The second peak at 54 Hz is due to the resonant condition of the 

combination frequency vibration (54+ 40 = 94) with the second mode of vibration at 94 Hz. Linearity of the 

combination frequency response with the exciting diagnostic force is also confirmed. 

Considering the 2Ω-Ωd combination frequency vibrations (Fig. 5b) the diagram shows a first peak at 13.0 Hz 

due to the resonance of the resulting vibration (40 – 13 = 27), a second peak due again to the excitation in 

resonance (as in Fig. 5a), but with higher amplitude with respect to Fig. 5a, due to the fact that the resulting 

combination vibration is at frequency 13 Hz, below the resonance, whilst in Fig. 5a the resulting frequency 

was at 67 Hz, above the resonance. Finally a 3.rd peak arises at 67 Hz due to another resonant condition with 

the 1.st natural frequency (67 – 40 = 27). Other combination frequency vibrations are too small to be 

considered as significant symptoms of the presence of the crack. 

Interesting is also to analyse the trend of the phase with respect to the exciting diagnostic force of the 

combination vibrations as function of the diagnostic excitation frequency. 
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Figure 6 presents the phase angle of the rotor vibration responses obtained by the sensor S28Z at the 

combination frequencies 2Ω + Ωd and 2Ω - Ωd, varying Ωd from 0 to 85 Hz in steps of 0.1 Hz. In this case, 

the diagnostic force was applied as previously in horizontal direction with an amplitude of 100 N. The rotor 

operational speed Ωd was as previously fixed to 1200 rev/min. These phase diagrams were determined for 

the shaft with a crack located at the element #10 with 25% depth, as well as for the case with a crack located 

at the element #10 with 50% depth, and finally for a crack located at the element #18 with 50% depth.  

In Fig. 6a phase variations from 0° to – 180° can be noticed in correspondence of the two peaks shown 

in Fig. 5a, as could be expected when passing resonant conditions. In Fig 6b instead the phase variations go 

in opposite way (from 0° to +180°) when crossing resonances: this must be due to the sign of the diagnostic 

frequency in the combination frequency. Significant changes in the phase behavior arise only due to changes 

in crack position along the shaft and do not appear when changing the depth of the crack only.  

These phase trends as function of the exciting frequency could also help in detecting cracks in rotating 

machinery to which external diagnostic forces are applied.  

  

  
a) b) 

Figure 6 – Phase angles of combination vibrations obtained by the sensor S28Z as function of Ωd  

(── element #10 with 25% depth; - - - element #10 with 50% depth; -- - -- element #18 with 50% depth) 

a) 2Ω+Ωd;   b) 2Ω - Ωd. 

   

     

5.    Conclusions 
A possible technique for detecting cracks in rotating machinery consists in applying additional external 

forces at frequencies, different from rotational speed, in order to generate so called combination frequency 

vibrations, that appear only in presence of transverse cracks. In order to generate vibrations that can emerge 

from noise, the combination frequency vibrations should be in resonance with some natural frequency of the 

shaft. This can be obtained with a suitable frequency of the exciting force. In order to analyse the conditions 

for exciting combination frequency vibrations with sufficient amplitude an original approach based on the 

harmonic balance method in the frequency domain is proposed in this paper.  The approach is validated by 

comparing the obtained spectral amplitudes with the rotational frequency response curve obtained by time 

integration of the original non-linear equation of motion. Through the development of the harmonic balance 

approach simple expressions for the combination frequency vibration amplitudes are derived that allow to 

analyse the mechanism of combination frequency vibration generation. The development of the different 

combination frequency components allows in general to neglect and skip all components except the first 

components that only have sufficient amplitudes to be recognized and used for crack detection. The 

numerical simulation of a test rig model cracked rotor confirms the forecasted situation. The harmonic 

balance approach allows further to evaluate for each combination frequency component the amplitude as 

function of the excitation frequency. Thus, the applicability of the combination frequency excitation for 

crack detection in rotating machinery has been analysed. 
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