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Abstract
This paper deals with the influence of speed fluctuations (non-stationary signal) on the cepstrum.
Due to the non-stationarity, a time-quefrency representation is also used to study the evolution of the
cepstral content. Illustrations were made by using gears signal by SAFRAN from the Surveillance 8
contests.

1 Introduction

Vibratory analysis is a very popular non-intrusive tool to perform diagnostic of rotating machinery.
Nevertheless, the effect of rotation speed on the vibration signals became significant when the speed is
non-stationary. In this case, instantaneous speed could be measured by using a tachometer signal and
used to take account the speed for diagnostics. The rotating machine instantaneous speed provided
by the tacho is also a very useful information. It could be sensitive to mechanical faults [1] and be
used for diagnostics. It is also requested for computed order tracking [2].

Since a tachometer speed signal is not always available, instantaneous speed has to be estimated
from other signals like the accelerometric signal. Some instantaneous speed extraction methods are
described in the MSSP Special Issue on Instantaneous Angular Speed (IAS) Processing and Angular
Applications [3] and [4]. These methods use analytic signal, parametric approach, ...

Another approach based on cepstrum was proposed in the Surveillance 8 Contest [4]. A cepstrum
(echo detector) [5, 6] is used to estimate the instantaneous speed. This method is derived from an
cepstral order tracking method presented (only in French) in [7]. Unfortunately, the cepstrum is known
to be sensitive to speed fluctuations.

In this paper it is proposed to study the influence of speed fluctuations on the cepstrum. A first
part recalls the classic cepstrum properties and studies the influence of speed fluctuations. In the
second part, a time quefrency-representation is introduced and speed fluctuation influence is discussed
by using some synthetic signals. Next some illustrations are made on real signals.

2 Cepstrum properties

Cepstrum has many applications [9] (detection of periodic components, diagnosis, modal analysis,
...). This paper is focused on detection of periodical components. Application is made on a civil
aircraft engine gearbox. One application could be instantaneous period (and speed) estimation. This
part explains how cepstrum could be used.

2.1 Definition

In this paper, the word cepstrum refers to power cepstrum as defined [8] by:

cepx(t) (τ) = F−1 [ln |X ( f )|] (1)

where X ( f ) is the Fourier Transform of the signal x(t), F−1 is the Inverse Fourier Transform, and, ln
the neperian logarithm. The variable τ is homogenous to a time and is named quefrency.
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2.2 Properties

Calculation to explain theoretically the results of the cepstrum on gearbox signals can be found in
[6]. Some results of this paper are recalled here.

The accelerometric signal associated with a gearbox can be viewed as a repetition of a series of
periodic patterns pk(t). A periodic pattern at period ak can be interpreted as a convolution of a single
pattern with a Dirac comb of period ak. Let’s consider that the gearbox can be modelled in an area
small enough to neglect speed fluctuations as:

x(t) =

[
M

∑
k=1

pk (t)∗ emak

]
∗himp (t) = xw (t)∗himp (t) (2)

emak =
n−1

∑
n=0

δn.ak (3)

where

• δt is the Dirac delta function delayed of t,

• pk (t) is the pattern associated with the gear k,

• emak is multiple echo terms to repeat the pattern at period ak,

• himp (t) is the impulse response of the mechanical structure,

• ∗ is the convolution product.

The term pk (t) is considered to have a constant Fourier transform of modulus Pk in [6] (i.e. to
have similar property of white noise). It means that the term xw (t) could be interpreted as a whitened
form of the signal without the contribution of the mechanical structure response.

1. The cepstrum transform a convolution product into an addition:

cepx(t) (τ) = cepxw(t) (τ)+ cephimp(t) (τ) (4)

2. Oppenheim and Schafer in [8] studied the impact of transfer function for digitised signal and
show that for :

H (z) =
B∏

Mi
i=1(1−aiz−1)∏

M0
i=1(1−biz)

∏
Ni
i=1(1− ciz−1)∏

N0
i=1(1−diz)

, (5)

the cepstrum is

ceph(n)(n) = ln(B), for n=0 (6)

ceph(n)(n) =−∑
i

an
i

n
+∑

i

cn
i

n
, for n>0 (7)

ceph(n)(n) = ∑
i

b−n
i
n
−∑

i

d−n
i
n

, for n<0 (8)

(9)

where ci and ai are the pole and zeros inside the unit circle and di and bi are the pole and zeros
outside the unit circle. This result shows that the cepstrum of transfer function is rather present
at the beginning of the cepstrum due to the term of 1/n.

3. According to [6], the cepstrum of the term xw (t) is composed of M positive and decreasing combs
with a step ak.

cepxw(t) (τ) =
M

∑
k=1

[
∑

n∈Z∗

1− (1−Pk)
n

2 |n|
δn.ak

]
(10)

The shape in comb of xw (t) cepstrum is totally different from the one associated with himp (t)
cepstrum. Therefore, it is possible to visually separate the two contributions.
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4. It is shown in [6] that if an additive noise is present in x(t), the amplitude of the combs decreases
and particularly the first peak.

For a gearbox, the cepstrum is expected to produce rhamonics associated with the shaft rotations.
Since the cepstrum transforms a convolution into an addition, the part of the cepstrum associated
to the Dirac comb emak is uncoupled with the part associated to the pattern pk(t) and the impulse
response himp (t).

An example of cepstrum coming from a gearbox is presented in Figure 1. The black lines indicates
times multiples of 4 ms and red lines times multiples of 5.5 ms. Two combs with periods of 4 ms and
5.5 ms clearly appear in the cepstrum. These two period are linked with two mechanical rotating
frequencies. These combs can be clearly distinguished from the rest of the cesptrum that contains
elements linked with impulse response himp (t). With an exception for the first and second peak, the
peaks amplitude decrease when the quefrency increase.
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Figure 1: Cepstrum example

These properties are established by considering a constant rotation speed zone. In the next section,
the effect of the period fluctuation is studied.

2.3 Effect of period (or speed) fluctuation

Response of a cepstrum to simple and multiple echoes with a decreasing amplitude has been
studied in [10]. In this paper, we are interested in the case of echoes of the same amplitude, and, with
a fluctuation in the localisation of the echoes due to speed fluctuations.

2.3.1 2 echoes with shift

To explore the effect of the period fluctuation, the following model of 2 echoes of shift a with a
fluctuation ∆ is introduced in this paper:

ea,∆ = δ0 + δa + δ2a+∆. (11)

The Fourier Transform (F ) of ea,∆ is:

F (ea,∆) = 1 + e−2π j f a + e−2π j f (2a+∆) with j2 =−1. (12)
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Its modulus, lower than 3 is:

|F (ea,∆)| =
√

3 + 2{cos(2π f a)+ cos [2π f (a + ∆)]+ cos [2π f (2a + ∆)]}

=
3√
2

√
1 +

4
9

{
cos(2π f a)+ cos [2π f (a + ∆)]+ cos [2π f (2a + ∆)]− 3

4

}
By using Taylor expansion of ln, the energy cepstrum is:

cepsea,∆ (τ) = ln
(

3√
2

)
.δ0 +

F−1 [Y ( f )]

2
(13)

where
F−1 is the inverse Fourier Transform,

Y ( f ) = ∑
n∈N∗

(−1)n−1 .4n

n.9n

{
cos(2π f a)+ cos [2π f (a + ∆)]+ cos [2π f (2a + ∆)]− 3

4

}n

= ∑
n∈N∗

(−1)n−1 .4n

n.9n ∑
i+ j+k+l=n

(
n

i, j,k, l

)
cosi (2π f a) .cos j [2π f (a + ∆)] .cosk [2π f (2a + ∆)].

(
−3

4

)l

and (
n

i, j,k, l

)
=

n!
i! j!k!l!

. (14)

The Inverse Fourier Transform of Y ( f ) is:

y(τ) = ∑
n∈N∗

(−1)n−1 .4n

n.9n ∑
i+ j+k+l=n

(
n

i, j,k, l

)(
−3

4

)l
[(

δ−a + δa

2

)∗i
∗
(

δ−a−∆ + δa+∆

2

)∗ j
∗
(

δ−2a−∆ + δ2a+∆

2

)∗k]

where ∗ is the convolution product, a∗n means a convoluted n times, and a∗0 = δ0.

Let us define

(
i
m

)
= i!

m!(i−m)! and the function z(i) =

{
0 for i = 0
1 for i 6= 0

.

Since (
δ−a + δa

2

)∗i
=

1
2i

i

∑
m=0

(
i
m

)
δ(i−2m)a.z(i) (15)

it is possible to simplify y(τ) to:

y(τ) = ∑
n∈N∗

(−1)n−1 .2n

n.9n ∑
i+ j+k+l=n

(
n

i, j,k, l

)(
−3

2

)l i

∑
p=0

j

∑
q=0

k

∑
r=0

(
i
p

)(
j
q

)(
k
r

)
δs

s = a [i + j + 2k−2pz(i)−2qz( j)−4rz(k)]+ ∆ [ j + k−2qz( j)−2rz(k)]

The energy cepstrum is finally:

cepsea,∆ (τ) = ln
(

3√
2

)
.δ0 +

y(τ)

2
(16)

In order to explain this expression easily, a simulation is made. The figure 2 shows the Test
signal ea,∆, its cepstrum computed numerically (echo shift of a = 1 000 samples, fluctuations of ∆ = 66
samples, signal length of 100 000 samples), and a cepstrum enlargement. Theoretical values computed
with equation (16) by considering a Taylor expansion of order n = 2, n = 5, n = 10 are given with
different colours on the enlargement. The peak at quefrency 0 is outside the scale (it is not exploited
here).

By looking at the figure, the following observations are made:

1. Two peaks are found at quefrency a and a + ∆. There are side bands of decreasing amplitude
spaced from ∆ near these two peaks.
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Figure 2: Cepstrum of 2 echoes of shift a with fluctuation (a=1000, ∆ = 66)

2. One peak is present at quefrency 2a+∆. The one at 2a is just a side band with a low amplitude.

3. Negative peaks indicates the fluctuation at quefrency ∆. They explains the absence of positive
echo at 3.a + ∆.

4. Take account the side bands in equation (16) involves using a high Taylor expansion order.

5. The higher the Taylor expansion order is, the closest the peaks amplitude are.

6. Observing higher quefrencies show that rharmonics of the followed peaks exist and that they
decrease rapidly.

7. Without fluctuations (∆ = 0), the peaks amplitude at quefrency a and a + ∆ are replaced by a
peak of double amplitude (sum of the amplitude of the two latter).

By using a Taylor expansion of order n = 1 of equation (16) the expression y(τ) became:

y(τ) =
2
9

[
δa + δ−a + δa+∆ + δ−a−∆ + δ2a+∆ + δ−2a−∆−

3
2

δ0

]
(17)

In this equation, contributions at quefrencies a, a + ∆, 2a + ∆ clearly appears. It can be noticed
that no term exists at quefrency 2a.

When considering a higher Taylor expansion order :

• a term at quefrency 2a is introduced for higher Taylor order, but, at a smaller amplitude,

• negative terms could appear for even value of n + l (for example at quefrency 3a),

• more sidebands are generated (see the expression of s) but with a smaller value due to the
coefficients.

2.3.2 Multiple echoes with shift

In case of multiple echoes with shifts, the model of equation (11) is generalised into multiple echoes
of shift a with a fluctuation ∆i :
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ema,∆i,M = δ0 +
M

∑
i=1

δi.a+∆i . (18)

Its Fourier Transform is:

F (ema,∆i,M) = 1 +
M

∑
i=1

e−2π j f (ia+∆i) (19)

= AM− j.BM (20)

with:

AM = 1 +
M

∑
i=1

cos [2π f (ia + ∆i)] and

BM =
M

∑
i=1

sin [2π f (ia + ∆i)] .

Its scarred modulus is:

|F (ema,∆i,N)|2 = A2
M + B2

M, (21)

with the following recurrence:

A2
M + B2

M = A2
M−1 + B2

M−1 + 1 + 2cos [2π f (Ma + ∆M)] (22)

+2
M−1

∑
i=1

cos{2π f [a(M− i)+ ∆M−∆i]} (23)

A0 = 1 (24)

B0 = 0. (25)

Its modulus, lower than M + 1 is:

|F (ema,∆i,M)|= M + 1√
2

.

√
1 + 2.

A2
M + B2

M

(M + 1)2 −1. (26)

By using Taylor expansion of ln, the energy cepstrum is:

cepsema,∆i ,M
(τ) = ln

(
M + 1√

2

)
.δ0 +

F−1 [Z ( f )]

2
(27)

where

Z ( f ) = ∑
n∈N∗

(−1)n−1

n

[
2.

A2
M + B2

M

(M + 1)2 −1

]n

. (28)

Since Z ( f ) is composed only of cosine wave and constant term, its contribution in the cepstrum will
be a set of Dirac at cosine frequencies (including null frequency). By considering a Taylor expansion
at order n = 1 (for simplicity), and considering the recurrence defined at equation (22) it is possible
to find the Dirac position associated by using the algorithm 1.

Figure 3 shows a test signal with 4 echoes with a period of 1 000 samples and a fluctuation
∆ = [0;66;−130;103]. Corresponding quefrencies computed according to algorithm 1 are presented in
the table 1. The colours used in this table is linked with the one used in the cepstrum on figure 3.

By looking at figure 3, the following observation can be made:

1. Considering only the order n = 1 in equation (28) enables to compute the most energetic que-
frencies.

2. There are Dirac in ceptrum at the same location than the Dirac in the test signal: i.a+∆i. These
Dirac have the same Power.
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Input: Number of echoes M, shifts ∆i, period a
Result: List of quefrencies Q
if M=1 then

Q← [a + ∆1] ;
else

Q← quefrencies associated with M−1 echoes with fluctuation ∆i ;
Q← [Q;0] ;
Q← [Q;Ma + ∆M] ;
for i← 1 to M−1 do

Q← [Q;a(M− i)+ ∆M−∆i] ;
end

end
return Q ;

Algorithm 1: Quefrencies associated with M echoes with fluctuation ∆i
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Figure 3: Cepstrum of 4 echoes of shift a with fluctuation (a=1000, ∆ = [0;66;−130;103])

M Quefrencies added at Mth step Numerical Values

1 a + ∆1 1 000

2 2a + ∆2;a + ∆2−∆1 2 066 ; 1 066

3 3a + ∆3;2a + ∆3−∆1;a + ∆3−∆2 2 870 ; 1 870 ; 804

4 4a + ∆4;3a + ∆4−∆1;2a + ∆4−∆2;a + ∆4−∆3 4 103 ; 3 103 ; 2 037 ; 1 233

Table 1: Quefrencies associated to 4 echoes (a = 1000 ; ∆ = [0;66;−130;103])
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3. There is M− i Diracs around the quefrency associated to the ith echo (i.e. 3 Diracs near quefrency
1 000, 2 near quefrency 2 066, ...).

4. The set of distances between these Diracs and i.a are
{

∆p−∆q
}

where p−q = i and 1+ i≤ p≤M.

The fluctuation values used in this example is ”high” in comparison with the shift a. For smaller
fluctuations values, the peaks will be closer to quefrencies a, 2.a, ... For the quefrency i.a, if the set
of fluctuations

{
∆p−∆q

}
(where p− q = i and 1 + i ≤ p ≤M) is lower than 1, the fluctuation is not

detectable by the cepstrum at quefrency i.a and only one main peak should appear. Therefore, a
tracking quefrency is possible for small fluctuations.

The next section will introduce the time-quefrency representation that enables to compute a series
a cepstrum against the time and to perform period tracking. It also shows its sensitivity to period
variation (quadratic form).

3 Time-quefrency representation

3.1 Definition

Let define the time-quefrency representation at instant t, quefrency τ, with a window length w by:

T QRx(t) (t;τ;w) = cepx(m).rectw(m−t) (τ) , (29)

where rectw (t) is a rectangular window of length w defined by

rectw (t) =

{
1 for 0≤ t < w,
0 outside.

(30)

3.2 Test signal

In order to simulate a fluctuation (increasing period), a test signal is generated. To create this test
signal a series of K = 150 peaks distances position dk is defined by:

dk = 100.0 + 0.1k for 1≤ k ≤ 50 (31)

dk = d50 + 0.4(k−50) for 51≤ k ≤ 100 (32)

dk = d50 + 0.4(k−50)+ 0.02(k−100)2 for 101≤ k ≤ 150. (33)

This test signal is composed of three parts. A linearly decreasing period with a step of 1. Another
linearly decreasing period with a higher step of 4, and, a quadratic form of decreasing period.

The peak position can be obtained by:

p1 = 1 (34)

pk+1 = pk + dk (35)

In order to generate peaks at non-integer position, an 10 times up-sampled signal t f q(n) is generated
by setting to amplitude 1 the set of elements at positions {round(10.pk)} and leaving the other values
to 0. The test signal tq(n) is obtained by decimating by a factor 10 the signal t f q(n). The decimation
enables to have peaks at non-integer positions in tq(n).

3.3 Test signal cepstrum

In order to understand the time quefrequency representation of the test signal, a particular instant
t is considered. Depending on the rectangular windows length w, at time t, the term wx(t;w) =
x(m) .rectw (m− t) in equation (29) contains the peaks at instants pK to pK+I where pK is the first
element greater than t and pK+I is the last element lower than t + w.

Since the cepstrum is sensitive to distance between peaks, it is interesting to compute the distance
d pK,α between the peak at instant pK and another peak at instant pK+α . If the term dk is identified
as a polynomial form at order 2:

8



dk = q + r.k + s.k2 (36)

the distance is:

d pK,α = pK+α − pK (37)

=
α−1

∑
β=0

dK+β (38)

= (α−1) pK +
α (α−1)

2
(r + 2.K.s)+

α (α−1)(2α−1)

6
s. (39)

The term wx(t;w) could be interpreted as a series I echoes of the peak at position pK . By anal-
ogy with equation (18) of the multiple echo with shifts, it could be considered that the shift a and
fluctuation ∆i are:

a = pK (40)

∆i =
i(i−1)

2
(r + 2.K.s)+

i(i−1)(2i−1)

6
s (41)

d pK,α = (α−1)a + ∆α . (42)

At the difference of the multiple echo shift, the first peak instant is pK and not 0. Since the
cepstrum is sensitive to echoes, there is no change in cepstrum peak position.

According to the section 2.3.2, cepstrum position there are peaks in the cepstrum at quefrencies:

{pK + ∆i+1−∆i}i=0..I−1 =
{

pK + i(r + 2K.s)+ s.i2
}

i=0..I−1 (43)

and rharmonics:

{2.pK + ∆i+2−∆i}i=0..I−2 =

{
2.pK +(2i + 1)(r + 2.K.s)+ s.

5i2 + 3i + 1
3

}
i=0..I−2

(44)

{3.pK + ∆i+3−∆i}i=0..I−3 (45)

· · ·

For the 100 first values of k in the test signal, dk is linear (s = 0). The previous peak location in
cepstrum becomes:

{pK + ∆i+1−∆i}i=0..I−1 = {pK + i.r}i=0..I−1 (46)

{2.pK + ∆i+2−∆i}i=0..I−2 = {2.pK +(2i + 1) .r}i=0..I−2 (47)

{3.pK + ∆i+3−∆i}i=0..I−3 (48)

· · ·

By looking at these equations, the following observations can be made:

1. There is a peak on cepstrum at quefrency pK . So, the cepstrum can be used to measure the
instantaneous frequency pK .

2. For a linear form of dk (i.e. s = 0) at the right of quefrency pK there is a series of I− 1 peaks
distant each other from r. This distance is the same whatever the index K and depends only on
factor r.

3. For a quadratic form of dk, this distance depends on K : it grows against the time t in the
time-quefrency representation.
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Figure 4: Time Quefrency Representation - Log Scale - Quefrency scale divided by 10 (due to deci-
mation)

4. The number of peaks I + 1 inside this window depends on the size w of the window. If the
window length is small enough to have the quantity I (r + 2K.s) + s.I2 of equations (43) lower
than a sample, the additional peak created near pK will not be visible.

5. The peak associated with the rharmonics of order 2 in the cepstrum are at quefrency 2.pK + ε

with ε = r + 2.K.s + s/3. For s = 0, the introduced bias ε will be depend on the value of r.
According to remark 2, the importance of r could be evaluated in the cepstrum.

6. The section 2.3.2 considers a Taylor expansion of order 1. This discussion concerns the associated
peaks. Lower peaks could appear on the cepstrum as shown in figure 3.

3.4 Simulation

The figure 4 shows a time quefrequency representation of tq(n) with a window of length w = 1000
samples. Slices of time frequency representation at the beginning, middle, and ending of the sequence
are presented on figure 5 (linear scale).

Theses figures lead to the following observation:

1. At sample t = 0, peak at quefrency 100 and rharmonics {200,300,400} can be identified. The
gray level (i.e. peaks amplitude) decrease with the rharmonic rank.

2. The 3 areas can also be identified : a slow slope (0.1) between samples 0 and 5000, a higher
slope (0.4) between samples 5000 and 10000, and, a quadratic period increase after.

3. According to equation (46) and (47), some peaks should appear after the fundamental pK and its
rharmonics at a distance proportional to the slope r. Since the slope is low in the first area, this
distance is lower than quefrency resolution, and, theses peaks are merged with the one at pk and
its rharmonics. This is illustrated by the top of the figure 6. This figure shows the histogram
of the distances dk inside the windows of length w (see equation 30) at sample 1000 (k = 11
to k = 20). On the left, the step between classes of 0.01 enable to distinguish each distance.
When this step takes the value of 1 only 2 classes represents the distances distribution like in
the cepstrum.
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Figure 5: Slices of Time Quefrency Representation - Linear Scale

Figure 6: Histogram of dk at sample 1000
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Figure 7: Slice of Time Quefrency Representation at sample 9000 without decimation

4. In the second area the slope increase. It leads to a larger distribution of dk in the histogram
and a larger peak in the cepstrum. The time quefrency slices on figure 5 effectively show that
the cepstrum peak associated with the fundamental becomes larger between the first and second
area. Its amplitude also becomes smaller.

5. In the second area, a second peak appears near rharmonics of rank 2. The distance between the
second peak and the rharmonics increases with the rharmonic order as indicates equation (47).
Following the same reasoning as the previous case, the variable dk should be replaced by dk +dk+1
for histogram computation. Nevertheless, the factor r = 0.4 is too small to justify the apparition
of these peaks. In order to investigate a cepstrum computed without decimation (i.e. a sample
rate 10 times higher) is presented on figure 7. Here, a series of peaks spaced by 0.8 (i.e. two
times 0.4 because of rharmonic of rank 2) clearly appears. But another series of negative peaks
also appears between. These peaks can be linked with the ones on figure 3 (they do not appear
in our model because an approximation at order 1 is used). When a cepstrum is computed with
less precision like in figure 5, the decimation effect combine positive and negative peaks and
creates two peaks.

6. In the last area, the slope constantly increase (quadratic evolution of the distance). Therefore,
the distance between peaks become high enough to distinguish many peaks nears rharmonics.
The distance between these peaks also increases (slowly) against the time (like the slope). The
number of peaks associated to a rharmonic depends on the number of peaks I contained inside
the windowed version of the signal as indicated by equations (43) and next ones. The evolution
of the signal in this area looks like a step. It is simply because the cepstrum evolves when a new
peak appears inside a window or another one disappears.

7. With the window of length w = 1000 samples (figure 5), there is 10 peaks at sample 1000. The
distance between peaks increases of r = 0.1 samples at each new peak (i.e. a difference of 1
samples between the distance of the first two peaks and the last two peaks contained in the
window). It explains the thickness of 2 samples of the peak near quefrency 100. When window
length is doubled w = 2000 on figure 8, there is 21 peaks, and a difference of 2.1 samples. It
explains that the peak is larger. The cost of enlargement is a lower amplitude. Therefore, the
size of the windows should be chosen such as the variation between the distance of the peaks
should not be too important (i.e. the amplitude of cepstrum peak should not be too low).

4 Application on SAFRAN signals

The concept of Time Quefrency analysis was illustrated on data issued from SAFRAN Contest at
Conference Surveillance 8 [11] described in [4]. These data sampled at Fs = 50 kHz (sampling period
of 20 µs) come for a civil aircraft engine with a gearbox (multistage) and are recorded with a non-
stationary rotation speed. The cepstrum on a stationary area was presented on the figure 1. Many
quefrencies associated with the gearbox shafts appears.
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Figure 8: Slices of Time Quefrency Representation - Linear Scale - Twice window size
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Figure 9: Tracking of quefrency beginning at 5.5 ms

By tracking the quefrency near 5.5 ms against the time it is possible to obtain the instantaneous
period variation against the time as shown in the figure 9.

The area at 47 s with a slope of −0.18 ms/s and 100 s with a slope of −0.01 ms/s was selected in
order to see the influence of the speed variation on the cepstrum.

The previous part shows that period fluctuation creates additional peaks near the fundamental
quefrency. If the period fluctuation or quefrency resolution is low, these additional peaks are combined
and appears as a large one. The number of additional peaks depends on the size of the windows.

Figures 10 and 11 shows the time-quefrency representation computed respectively t = 47 s and
t = 100 s. The time is fixed for each graph and the influence of the windows size w on the cepstrum
is studied. Each figure is enlarged around the peak at 5.4 ms (quefrency became 4.4 ms at t=100 s).
The bottom of this figure shows the evolution of the maximum of the cepstrum (in the displayed area)
against the window size.

For a small window size in the figure 10, the peak at 5.4 ms is sharp. It becomes larger when the
window size increases.

A slope of −0.18 ms/s means an instantaneous period reduction of 0.18.10−3× 5.10−3 = 1 µs at
each cycle. A window size of 0.1 s contains 20 cycles of 5 ms. It means that the cepstrum contains 20
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Figure 10: Influence of Window size at t=47 s

14



Figure 11: Influence of Window size at t=100s

peaks spaced by 1 µs near the quefrency 5.4 ms. Since the sampling period of 20 µs is lower than 1 µs,
these peaks appear as one.

When the windows size grows, the number of cycles inside the window also grows. At t = 0.4 s
there is 80 cycles that corresponds to a width of 80 µs (i.e. 4 samples) that can be observed on the
figure.

When the peak becomes larger, this amplitude becomes lower : the same energy is concentrated
into a wider area.

On the figure 11, the slope is 20 times lower. Therefore, the influence of the period fluctuation
does not affect the width of the cepstrum with a window size lower than 0.4 s.

It can be concluded that the size of the cepstrum windows should take account the slope of
the instantaneous period : rapid change means lowest windows size. Due to the result of figure
10 a windows length of w = 0.08 s was choosen for time quefrency computation. Time Quefrency
Representation 12 is shown on figure 12 .

The instantaneous period profile can be easily recognised on this figure by following at the funda-
mental quefrency of the shaft at 5 ms and its rharmonics. Other rharmonics that does not evolve with
the same profile could also be seen.

This Time Quefrency Representation can be used to extract the instantaneous period profile by
making a time quefrency tracking as explained in [4]. The instantaneous profile obtained after time
quefrency tracking is shown on figure 9.

5 Conclusion

This paper has recalled some results of the cepstrum for stationary signal (i.e. no speed fluctuation).
Next, it extends these results in the case of the period fluctuation and illustrates its effects. It was

15



Time Quefrency Representation (log scale)
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Figure 12: Time Quefrency Representation
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shown that the peak at each quefrency is split in many peaks distant from the fluctuation. Time
Quefrency representation was also proposed to see the evolution of the period fluctuation against the
time. Time Quefrency Representation was applied on synthetic and real signal. It was shown that the
window length should be small enough to produce sharp peaks at quefrency of interest.
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d’énergie pour la vélocimétrie par images de particules. Traitement du signal, 9(3):267 – 271,
1992.

[11] SAFRAN. Safran contest. In Conference Surveillance 8, Roanne, 20-21 October 2015.

17


