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Abstract
In Industry, the maintenance policy is devoted to avoid sudden failures that can cause the stop of the system
with a consequent loss of production, or - at least - to the minimization of the failure probability and/or the
preservation of this probability under a fixed value. In such systems, the use of sensors for the monitoring of
their degradation level is very useful. This gives the possibility to follow the time history of the component
and to identify the most appropriate time for the maintenance activities, making possible the exploitation of
the component for almost its whole useful life. The traditional preventive maintenance policy makes use of the
a priori information on the population by assuming a probability distribution function and by estimating the
involved statistical parameters [1]. By a monitoring system further information on the stochastic degradation
process of the particular component belonging to the population can be available. Nevertheless, such sensors
add new costs and exhibit inaccuracy in tracking the stochastic process. This inaccuracy implies an uncertainty
in the supplied information. This occurs whether the degradation is defined as a geometric characteristic of
the component or as the exhibition of a particular effect. For example, in a cutting tool, wear changes the
geometrical characteristics causing an increase of superficial roughness on the machined parts. If a maximum
value of roughness is accepted, the condition of failed cutting tool corresponds to the reaching of such value. In
this case, the vibration signal is not a correct fault indicator because it is not suitable for tracking the degradation
process. For these reasons, a predictive maintenance policy presupposes the identification of a signal well
correlated to the degradation process and a high precision monitoring system. Components whose sudden
failure can produce dramatic consequences on the system availability are considered. They must operate with
a high required degree of reliability and the maintenance policy must assure a reliability level not lower than a
pre-defined value. This paper is the second part of two [2], presenting an algorithm for the implementation of
a sensor-driven predictive policy based on a Bayesian approach. Simulation results are supplied.

1 Introduction

For some industrial systems, the main objective of the maintenance activity is the minimization of the fail-
ure probability or, at least, the preservation of this probability under a fixed value. In such systems sensors are
employed to monitor components degradation process over time [3], [4] with the objective to identify the most
appropriate time for the starting of the maintenance actions. This results in a better exploitation of the moni-
tored component during its useful life. With the development of electronic monitoring systems and of modern
diagnostic tools, a significant interest for the predictive maintenance [5, 6, 7, 8] policy has increased with re-
spect to the traditional preventive one. Actually, the preventive maintenance policy is exclusively based on the
a-priori information of the population without any consideration of the specific behavior of each component.
Through a monitoring system further information on the stochastic degradation process of each item can be
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available both for the prediction of the remaining time to failure [9] and for the scheduling of the optimal main-
tenance time. Such approach is particularly useful for the technical staff managing the maintenance actions.
Actually, it gives the possibility to plan the maintenance resources, to be employed for the plant maintenance
activities [10], with an adequate advance. Nevertheless, sensors use add new costs and new uncertainties in the
supplied information. These uncertainties occur whether the degradation is defined as a geometric characteris-
tic of the component or as the exhibition of a particular effect. For instance, in a cutting tool, wear changes the
geometrical characteristics causing an increase of superficial roughness on the machined parts [11].

If a maximum value of roughness is accepted, the condition of failed cutting tool corresponds to the reaching
of such value. In this case, the vibration signal is not the best fault indicator because it can not follow the
degradation process accordingly. A second kind of uncertainty depends by the monitoring system itself. A
monitoring system is in fact constituted by different parts: the connection between the component and the
sensor, the sensor itself, the transmission system, the signal amplifier, the acquisition system.

Therefore, a predictive maintenance policy presupposes the identification of a physical signal well corre-
lated to the degradation process and of a high precision monitoring system. In this paper, components whose
sudden failure can produce dramatic consequences on the system availability are considered. Therefore, it is
assumed that they must operate with a high required degree of reliability [12] and that the maintenance policy
must assure a reliability level not lower than a fixed value. In order to choose between the implementation of
the traditional preventive maintenance policy and the predictive one, a comparison is proposed by simulation.
Actually, by hypothesizing a degradation model [3, 9, 13], it is shown how the convenience of the predictive
maintenance approach depends both on the parameters characterizing the stochastic degradation process and
on the uncertainty of the monitoring system. In this paper, the Bayesian approach [14] is proposed to update
the a priori information on the population which the components belong to, as an effective and dynamic tool
to identify the different behaviors of each component during its useful life. This approach has been proposed
in different context. In [15], authors investigate how the use of a Bayesian updating procedure changes the
characteristics of the failure rate associated with the time-to-failure distribution. In [16] it is emphasized how
the remaining useful life (RUL) can differ for similar components operating under the same conditions. To
detect such differences, Authors propose a Bayesian approach for predicting the RUL of critical components.
Finally, in [17], a Bayesian approach is proposed to manage a water distribution network based on the eval-
uation of the reliability of the network components. The paper is organized as follows: section 2 introduces
the degradation model and the process monitoring, section 3 presents the Bayesian approach. In section 4, a
comparison between the preventive and the predictive maintenance policy is presented. Section 5 reports the
simulation results and, finally, in section 6 conclusions are drawn.

2 Modeling the degradation process and process monitoring

The application of the predictive maintenance policy is preceded by the selection and measurement of one
or more variables representative of underlying degradation process. In this study a first autoregressive model
with drift (AR(1)) or non stationary random walk model (RWM) (see Appendix A) is assumed to model the
degradation process on the physical parameter of interest, say y [11]:

y(t +dt) = y(t)+ γ
′dt + ε(t) (1)

In equation 1, γ ′ is the drift, ε(t) is a white process normally distributed with zero-mean and variance σ2
ε .

Since the degradation process is observed at regular times ∆t (unit of time), model (1) will be discretized. By
setting γ =

∫
γ ′dt = γ ′∆t, equation 1 becomes:

yi+1 = yi + γ + εi+1 (2)

The degradation path cannot be generally observed directly but through a monitoring system that supplies
a variable m correlated to the real degradation path y. If mi represents the value of such variable at time ti and
the output of the monitoring system is linear, the relation between mi and yi can be expressed by:

mi = a+byi +δi (3)
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where a e b are the coefficients of the linear transformation and δi is the total system error at time i. Let δ

be normal distributed with zero-mean and variance δ 2
γ . From equation 3, yi can be expressed as follows:

yi =
mi−a−δi

b
(4)

By substituting equation 4 in equation 2, it follows:

mi+1−a−δi+1

b
=

mi−a+δi

b
+ γ + εi+1 (5)

Therefore,

mi+1 = mi +bγ +∆i+1 +bεi+1 (6)

Where ∆i+1 = δi+1−δi. Setting λi+1 = ∆i+1 +bεi+1, equation 6 becomes:

mi+1 = mi +bγ +λi+1 (7)

where λ ∼ N(0,2σ2
δ
+bσ2

ε ).

3 Bayesian approach

One of the most promising crossover between statistics and machine diagnostics is given by the application
of the Bayesian inference to the condition monitoring [18, 19]. The Bayesian inference is a method of statistical
inference based on the Bayes’ theorem [14], which is used to update the probability for a hypothesis as more
evidence or information becomes available. In equation 7, γ , the mean drift characterizing the degradation
pattern of the components, is a known deterministic parameter, while λ represents the stochastic behavior
of the degradation process. The drift γ represents a constant physical phenomenon common to all the units
belonging to the same population. However, each component belonging to a population can exhibit a different
degradation behavior depending both on the stochastic nature of the degradation process and on specific aspects,
i.e. geometric or metallurgical characteristics or on different environmental working conditions. For these
reasons, parameter γ should be more properly considered as a stochastic variable and its value for a specific
component as an outcome. In this paper a normal probability distribution with mean µγ and variance σ2

γ has
been assumed for variable γ .

Therefore, equations introduced in the previous section should be referred to each component by specifying
it with an index j. With these assumptions, the distribution of the stochastic variable mi+1, conditioned by the
acquisition of mi, is normal with mean and variance given by the following equations:

E[mi+1] = mi +bµi, j (8)

Var[mi+1] = b2
σ

2
γ, j +σ

2
λ

(9)

Using data coming from the monitoring system, it is possible to estimate more accurately the degradation
parameter γ j for the j-th component. As underlined before, such drift can be considered as an outcome of the
stochastic variable γ . The initial available information on this outcome is the distribution of γ , π(γ) with mean
µγ and variance σ2

γ . By a Bayesian approach [14], the a-priori information π(γ j)≡ π(γ) will be updated on the
basis of the acquired data coming from the monitoring system. Therefore, if mi represents the last acquisition
of the monitoring system, the a-posteriori distribution of γ j for the component j, p(γ |mi), is normal with mean
µi, j and variance σ2

γ, j. For sake of simplicity, by setting a = 0 and b = 1 in equation 3, mean and variance of
variable γ can be updated through the following equations [13]:

µγ, j =
σ2

γ mi +σ2
λ

µγ

tiσ2
γ +σ2

λ

(10)

σ
2
γ, j =

σ2
γ σ2

λ

tiσ2
γ +σ2

λ

(11)

3



The estimate (m̂i+1, j) of m for component j at time i+1 , conditioned by the last acquisition at time i, can
be drawn from equation 7 as follows:

m̂i+1, j = m1, j +bγ j +λi+1, j (12)

m̂i+2, j = mi+1, j +bγ j +λi+2, j = mi, j +2bγ j +λi+1, j +λi+2, j (13)

By iterating the procedure at time i+ k:

m̂i+k, j = mi, j + kbγ j +λi+1, j +λi+2, j + · · ·+λi+k, j (14)

The estimate of mean and variance of m̂i+k, j, are:

µ̂i+k, j |mi, j= mi, j +bkµγ, j (15)

σ̂
2
i+k, j |mi, j= b2k2

σ
2
γ, j + kσ

2
λ

(16)

4 Comparison between preventive and predictive maintenance

The described monitoring system can be used for the implementation of a predictive maintenance policy.
The maintenance policy must assure a reliability for the monitored component not lower than a fixed value. Let
f (τ) be the failure time distribution of the population which the component belongs to and Fτ(t∗) the unreli-
ability of such component at time t∗. It follows Fτ(t∗) = P{τ ≤ t∗}, i.e. the probability that the component
failure takes place before t∗.The monitored component will be considered failed when the degradation level
will reach a limit value y∗ that corresponds to a threshold value m∗ for the monitored parameter. Thus, the
probability that the component fails before t∗ is the probability that the degradation signal m(t∗) at time t∗ is
equal or greater than the threshold m∗. Consequently, Fτ(t∗) = P{τ ≤ t∗}= P{m(t∗)≥m∗}. Reliability R(t∗)
is obviously 1−Fτ(t∗) [12]. If T indicates the necessary time to plan the maintenance activities, it is possible
to estimate, at the acquisition time t, the degradation level of the monitored component at the future time t +T .
Assuming T as an integer multiple of the acquisition interval t, the reliability of the generic component j at
time t +T , can be computed as follows:

R j(t +T ) =
∫ m∗

−∞

f (m̂t+T )dm̂ (17)

=
∫ m∗

−∞

1
√

2π

√
b2T 2σ̂2

γ, j +T σ2
λ

{− 1
2(b2T 2σ̂2

γ, j +T σ2
λ
)
[m̂t+T − (mt +bT µ̂γ, j)]

2}dm̂t+T (18)

To show how the variables characterizing the degradation process and the monitoring system can influ-
ence the advantages achievable with the implementation of the predictive maintenance policy, the degradation
process of 3.000 components, following the stochastic process described in the previous section, was simu-
lated with Matlab. In order to estimate the a-priori information on the mean and variance ( µγ and σ2

γ ) of the
population, the degradation behavior of 25 components was observed by simulation.

These a-priori information was used for the determination of the failure time probability distribution pa-
rameters and for the evaluation of the maintenance time interval (tprev), when a preventive maintenance policy
is employed. The same a-priori information is updated according to equation 10 and 11 by Bayesian approach
when a predictive maintenance policy is adopted (tpred).

Considering the assumptions on the stochastic process, the distribution function of the failure time, under
the condition that the threshold m∗ has been reached, can be obtained by the Bayes formula as an a-posteriori
probability. This distribution is known as inverse Gaussian [11]. From this distribution, it is possible to calcu-
late the replacement interval respecting the constraint on reliability or equivalently on the accepted risk. The
same constraint on reliability is considered for the calculation of the replacement instants, when the predictive
maintenance policy is adopted. In both cases failure risk of 0.01 (1%) is considered. In the case of predictive
policy, T is fixed to 10, i.e. it is assumed that 10 time unities are sufficient to plan the maintenance activities.
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It is also assumed that the scheduled time for the starting of the maintenance activities can be changed only if
a failure occurs in the time interval [t, t +T ].

For each simulated component, the calculated times tpred and tprev are compared with the actual time (treal)
corresponding to the reaching of the fixed threshold m∗.

In particular, the effectiveness of the two maintenance policies is here evaluated by calculating the distance
between the couples tpred − treal and tprev− treal . The smaller the relative mean distance, the better the main-
tenance policy is. Actually a smaller time distance corresponds to a better exploitation of the component. To
these purposes, the following equations are employed:

dpred =
1
N

N

∑
j=1

|tpred, j− treal, j|
treal, j

(19)

dprev =
1
N

N

∑
j=1

|tprev, j− treal, j|
treal, j

(20)

5 Simulation results

By choosing different combinations of the variances σ2
γ , σ2

ε , σ2
δ

, the relative mean distances were computed
according to equations 19 and 20. Results are shown in Table 1.

Simulation σ2
γ σ2

ε σ2
δ

dpred dprev

1 0.4 0.4 0.2 0.1835 0.2787
2 0.4 0.2 0.2 0.1804 0.2749
3 0.4 0.4 0.4 0.1896 0.2787
4 0.2 0.2 0.2 0.1813 0.2272
5 0.2 0.2 0.6 0.1945 0.1925
6 0.2 0.4 0.4 0.1891 0.1925
7 0.2 0.4 0.8 0.1995 0.1925
8 0.2 0.4 0.2 0.1834 0.1925

Table 1: Mean relative distances between times obtained by simulation

Results reported in Table 1 show the influence of different sources of uncertainty on the adopted mainte-
nance policy. Although no experimental plan was employed, it is possible to draw some interesting considera-
tions. The predictive maintenance policy appears little influenced by the variability of the parameter γ , while it
is more influenced by the variability of the degradation model σ2

ε and by the uncertainty of the monitoring sys-
tem σ2

δ
. Different considerations can be done for the preventive maintenance policy. Actually, it appears more

influenced by the variability of the parameter γ and little by σ2
ε . Obviously it is not influenced by σ2

δ
because

no monitoring system is employed. In conclusion, the predictive maintenance policy is always more effective
than the preventive one, excluding those cases with the highest value of σ2

δ
. The advantages of the predictive

policy increases significantly with the increasing of the parameter σ2
γ , is less influenced by the variability of the

degradation process and decreases with the increasing of the uncertainty of the monitoring system, until this
policy can become not convenient.

6 Conclusions

In this paper, a comparison between the traditional preventive maintenance policy and the predictive one
is presented by simulation. A Bayesian approach is proposed for the integration between information coming
from a monitoring system and the a-priori knowledge of the degradation process when a predictive maintenance
policy is adopted. The proposed degradation model takes into account different sources of variability and their
impact on the adopted maintenance policy (preventive vs predictive) is presented. In particular, it is shown how
the predictive maintenance policy makes possible a better exploitation of a component and how this advantage
can gradually be lost with the increasing of the uncertainty of the monitoring system. The proposed procedure
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can be used for an early estimation about the convenience in the implementation of a predictive maintenance
policy, especially in those real situations where system reliability is the most critical parameter.
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A Appendix

A Random Walk Model (RWM) is a non stationary model. In a model with drift, yi+1 is linked to yi by the
following equation: yi+1 = yi + γ + εi+1 where γ is the drift and εi+1 a white noise process, εi+1 ∼ N(0,σ2).

It is possible to write y1 = y0 + γ + ε1, y2 = y1 + γ + ε2, y3 = y2 + γ + ε3, etc...
Therefore, y3 = y0 +3γ + ε1 + ε2 + ε3 and generally yk = y0 + kγ +∑εk.
It results: E(yk) = y0 + kγ and Var(yk) = kσ2. Hence, in a RWM with drift, both its mean and variance

increase over time such that it is a non stationary process.
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